CS456: Machine Learning (2/2019)
Meeting: Tues-Fri, 11.00-12.30 @ CSB202
Instructor: Jakramate Bootkrajang
Office : 15.30-16.30 Tuesday-Friday @ CSB 107
Email: jakramate.b@cmu.ac.th
Announcements
Greeting!!
ให้นักศึกษาตั้งทีมแล้วเข้าทดลองส่งคำตอบได้ที่
[link]
Dart score prediction is now on Kaggle
[link]
Hackathon
[link]
Assignment 1 is announced
Assignment 2 is announced
DA decision boundary
[colab]
Linear regression code
[colab]
Assignment 3 is announced
Midterm scores announced
[link]
Syllabus
Date
Lecture
Date
Lecture
HW
17 Dec
Admin
20 Dec
Introduction to ML
[link]
24 Dec
Math refresher
27 Dec
Regression
31 Dec
New year
3 Jan
New year
7 Jan
Linear Least Square
[colab]
10 Jan
Classification
Dart score prediction
13 Jan
SVM
17 Jan
SVM + Kernel
20 Jan
Logistic Regression
24 Jan
Discriminant Analysis
[colab]
[pdf]
(due 28 Jan)
27 Jan
Neural Networks
31 Jan
Backpropagation
Backprop by example
4 Feb
Deep learning (1)
7 Feb
Deep learning (2)
11 Feb
Classifier evaluations
15 Feb
Exam preparation
CNN homework
18 Feb
Midterm examination 15.30-18.30
Date
Lecture
Date
Lab
HW
25 Feb
Clustering and k-means
28 Feb
Mixture model
[slides]
3 Mar
Cluster evaluation
6 Mar
Dimensionality reduction and PCA
10 Mar
Dimensionality reduction and PCA
13 Mar
Independent Component Analysis
[reading]
17 Mar
Bias/Variance Trade-off
20 Mar
Regularisations
24 Mar
Reinforcement learning + Markov Process
27 Mar
Markov Decision Process + Value-iteration
31 Mar
Q-learning
3 Apr
Wrap-up
6 Apr
TBD
10 Apr
TBD
14 Apr
Thai New year
17 Apr
Thai New year
23 Apr
Final examination (regular exam) 15.30-18.30
Assigments
(via Kaggle competition platform)
Assignment 0: System testing (due 20 Dec.)
Competition link
Assignment 1: New york taxi fare prediction (subsampling version) (due 2 Feb)
Competition link
Assignment 2: (SVM & LR written assignment)
[pdf]
(due 28 Jan)
Assignment 3: Flower Classification with TPUs (due 17 Mar)
Competition link
หมายเหตุ การบ้านนี้จำเป็นต้องใช้การประมวลผลบน GPU หรือ TPU นักศึกษาอาจเริ่มต้นจาก notebook แนะนำนี้ ซึ่งมีโควต้าในการใช้งาน TPU ของ Kaggle จำนวน 30 ชั่วโมงต่อเดือน
[link]
Grading
Midterm: 35%
Final 35%
Assignments: 30%
Useful resources
Book
Machine learning
by Tom Mitchell
Pattern Recognition and Machine Learning
by Chris Bishop
Foundation of Machine learning
by Mehryar Mohri et. al.
Kernel Methods for Pattern Analysis
by John Shawe-Taylor et al.
Online Materials
Scikit-learn
Anaconda
Julia language quick introduction
Back to Top