204456: Machine Learning

Ch02 - Maths refresher

Jakramate Bootkrajang

Department of Computer Science
Chiang Mai University
Based on materials for CSS490 by Prof. Jeff Howbert

Objective

- To look at essential maths concepts for this course
 - ▶ Linear algebra
 - Statistics
 - Optimisation

Area of maths essential to ML

- Linear algebra
 - A study of vector/matrix
 - ▶ Data in ML is represented in vector/matrix form
- Statistics
 - Some say 'Machine learning is part of both statistics and CS'
 - Probability, statistical inference, validation
- Optimisation theory
 - The 'learning' part in machine learning
 - Rely hugely on calculus

Why worry about the maths?

- You will know how to apply ML packages after this course
- However to get really useful results, you need
- to have good mathmatical intuition of ML principles
- to understand the working of those algorithms so that
 - know how to choose the right algorithm
 - know how to set hyper-parameters
 - troubleshoot poor results

Notations

$a \in A$	set membership: \boldsymbol{a} is a member of set \boldsymbol{A}
B	cardinality: number of items in set ${\cal B}$
$ \mathbf{v} $	norm: length of vector v
\sum	summation
\int	integral
$\mathcal R$	the set of real number
\mathcal{R}^d	real number space of dimension d

Notations

 $\mathbf{x}, \mathbf{u}, \mathbf{v}$ vector (bold, lower case) \mathbf{X}, \mathbf{B} matrix (bold, upper case) y = f(x) function: assign unique value in set Y to each value in set X derivative of y with respect to single variable x $y = f(\mathbf{x})$ function in d-space $\frac{\partial y}{\partial x}$ partial derivative of y with respect to element i of \mathbf{x}

Linear algebra

Applications

- Operations on or between vectors and matrices
- Dimensionality reduction
- Linear regression
- Support Vector Machine

Why vector and matrices?

- Most common form of data organisation for ML is 2D arry
 - rows represent samples (datapoints)
 - columns represent attributes (features)
- Natural to think of each sample as a vector of attributes and whole array as a matrix

Data matrix

Vectors

- Definition: an *d*-tuple of values (usually real numbers)
 - d referred to as the dimension of the vector
 - ightharpoonup d can be any positive integer, from 1 to infinity
- Can be written in column form (conventional) or row form
 - vector elements indexed by superscript

$$\bullet \ \mathbf{x}_i = \begin{bmatrix} x_i^1 \\ x_i^2 \\ \vdots \\ x_i^d \end{bmatrix} \qquad \mathbf{x}_i^T = [x_i^1, x_i^2, \dots, x_i^d]$$

Vectors

can think of a vector as a point in space

Vector arithmetic

- Addition of two vectors
 - add corresponding elements

$$\mathbf{z} = \mathbf{x} + \mathbf{y} = (x^1 + y^1, \cdots, x^d + y^d)^T$$

- result is a vector
- Scalar multiplication
 - multiply each element by scalar

 - result is a vector

Vector arithmetic

- Dot product of two vectors
 - multiply corresponding elements, then add products

$$a = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^d x^i y^i$$

result is scalar

Matrices

- Definition: an $n \times d$ two-dimensional array of values (usually real numbers)
 - ightharpoonup n rows, d columns
- Matrix referenced by two-element subscript
 - first element in subscript is row
 - second element is column
 - ▶ A_{13} or a_{13} is element in the first row, third column of A

Matrices

- A vector can be regarded as special case of a matrix, where one of matrix dimensions = 1
- Matrix transpose (denoted A^T)
 - swap columns and rows
 - $n \times d$ matrix becomes $d \times n$ matrix

Matrix arithmetic

- Addition of two matrices
 - ightharpoonup C = A + B
 - $c_{ij} = a_{ij} + b_{ij}$
 - result is a matrix of same size
- Scalar multiplication of matrix
 - ightharpoonup $\mathbf{B} = a \cdot \mathbf{C}$
 - $b_{ij} = a \cdot c_{ij}$
 - result is a matrix of same size

Matrix multiplication

- TO THE BOARD
- Multiplication is associative: $\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$
- Not commutative: $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Transposition rule: $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$

Matrix multiplication

 RULE: In any chain of matrix multiplications, the column dimension of one matrix in the chain must match the row dimension of the following matrix in the chain.

• Example: **A** 3×5 , **B** 5×5 , **C** 3×1

Right: $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A}^T$

Wrong: $\mathbf{C} \cdot \mathbf{A} \cdot \mathbf{B}$

Statistics

Concept of probability

In some process, several outcomes are possible. When the process is repeated a large number of times, each outcome occurs with a characteristic relative frequency or probability. If a outcome happens more often than another outcome we say it is more probable.

Probability spaces

- A probability space is a random process or experiment with three components:
 - $ightharpoonup \Omega$, the set of possible outcomes
 - \star number of possible outcomes = $|\Omega| = N$
 - F, the set of possible events E
 - \star an event comprises 0 to N outcomes
 - ★ think of as a dichotomy of outcomes
 - ★ number of possible events = $|F| = 2^N$
 - ▶ *P*, the probability distribution
 - function mapping each outcome and event to real number between 0 and 1

Axioms of probability

- 1 Non-negativity
 - ▶ $p(E) \ge 0$ for all $E \in F$
- 2 All possible outcomes $p(\Omega)=1$
- 3 Additivity of disjoint events: for all events $E,E'\in F$ where $E\cap E'=\emptyset$, $p(E\cup E')=p(E)+p(E')$

Types of probability spaces

- ullet Discrete space $|\Omega|$ is finite
- \bullet Continuous space $|\Omega|$ is infinite

Example of discrete probability space

Single roll of a six-sided die (singular of dice)

- 6 possible outcomes: $O = \{1, 2, 3, 4, 5, 6\}$
- $2^6 = 64$ possible events
 - $E = \{O \in \{1,3,5\}\}$ outcome is odd
- If die if fair, p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6

Example of continuous probability space

Height of randomly chosen Thai male

- Infinite number of outcomes
- Infinite number of events
 - $E = \{O|O < 160\}$ individual chosen is smaller than 160 cm.
- \bullet Probabilities of outcomes are not equal, and are described by a continuous function, $p(\mathit{O})$

Example of continuous probability space

Height of randomly chosen Thai male

- ullet p(O) is relative not absolute
- p(O = 175) = 0
- but we can still make comparison p(O=170)>p(O=180) ?

Random variables

- \bullet A random variable X is a function that associates a number (label) x with each outcome O of a process
- Basically a way to redefine (usually simplify) a probability space to a new probability space
- ullet Example X= number of heads in three coin flips
 - possible values of X are 0,1,2,3
- Example X = region of car manufacturer
 - Original outcomes could be a set of countries
 - ▶ possible values of *X* are 1=European, 2=Asia, 3=America

Multivariate probability distribution

- Scenario
 - Several random processes occur
 - Want to know probabilities for each possible combination of outcomes.
- Can describe as joint probability of random variables
 - two processes whose outcomes are represented by random variables X and Y, Probability that process X has outcome x and process Y has outcome y is denoted as: $p(X=x,\,Y=y)$

Example of multivariate distribution

Multivariate probability distribution

- Marginal probability
 - Probability distribution of a single variable in a joint distribution

marginal probability: p(X = minivan) = 0.0741 + 0.1111 + 0.1481 = 0.3333

Multivariate probability distribution

- Conditional probability
 - Probability distribution of one variable given that another variable takes a certain value

$$p(X = x | Y = y) = p(X = x, Y = y)/p(Y = y)$$

conditional probability: $p(Y = \text{European} \mid X = \text{minivan}) = 0.1481 / (0.0741 + 0.1111 + 0.1481) = 0.4433$

Continuous probability distribution

 Same concepts of joint, marginal, and conditional probabilities apply (except use integrals)

Expected value

Given

- A discrete random variable X, with possible values $x = x_1, x_2, \dots, x_n$
- Probability $p(X = x_i)$
- A function $y_i = f(x_i)$ defined on X

Expected value is the probability-weighted "average" of $f(x_i)$

$$E(f) = \sum_{i} p(x_i) \cdot f(x_i) \tag{1}$$

Calculus

Derivative

A derivative of function at x_0 is the rate of change of function values as input changes near x_0

$$\frac{dy}{dx} = \frac{df(x_0)}{dx} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Partial Derivative

A partial derivative of multivariate function at \mathbf{x}_0 is the rate of change of function values as the *i*-th component of the changes near \mathbf{x}_0

$$\frac{\partial y}{\partial x_i} = \frac{\partial \mathit{f}(\mathbf{x}_0)}{dx_i} = \lim_{h_i \to 0} \frac{\mathit{f}(\mathbf{x}_0 + h_i) - \mathit{f}(\mathbf{x}_0)}{h_i}$$

 h_i is infinitesimal for component i

Common derivatives

$$\bullet \ \frac{daf(x)}{dx} = a\frac{df(x)}{dx}$$

$$\bullet$$
 $\frac{dx^k}{dx} = kx^{k-1}$

•
$$\frac{df(x)g(x)}{dx} = f(x)\frac{dg(x)}{dx} + g(x)\frac{df(x)}{dx}$$

$$\bullet$$
 $\frac{de^x}{dx} = e^x$

Gradient

A vector of partial derivatives

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_d} \end{bmatrix}$$

Hessian

A matrix of second partial derivatives

$$\mathbf{H}(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial w_1^2} & \frac{\partial^2 f}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 f}{\partial w_1 \partial w_D} \\ \frac{\partial^2 f}{\partial w_1 \partial w_2} & \frac{\partial^2 f}{\partial w_2^2} & \cdots & \frac{\partial^2 f}{\partial w_2 \partial w_D} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial w_1 \partial w_D} & \frac{\partial^2 f}{\partial w_2 \partial w_D} & \cdots & \frac{\partial^2 f}{\partial w_D^2} \end{bmatrix}$$

References

- Math for Machine learning by Hal Daume III http://users. umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf
- Machine learning math essentials by Jeff Howbert http://courses.washington.edu/css490/2012.Winter/ lecture_slides/02_math_essentials.pdf