CS456: Machine Learning

Support Vector Machine + Kernel

Jakramate Bootkrajang

Department of Computer Science Chiang Mai University

Objectives

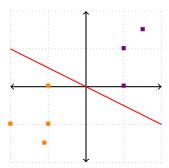
- To understand what decision boundary is
- To understand how SVM works and be able to apply SVM model effectively
- To understand what kernel is, and be able to choose appropriate kernel

Outlines

- Linear Decision Boundary
- SVM's philosophy
- Margin
- SVM + Kernel function
- Regularised SVM
- SVM in Sklearn

Linear decision boundary

A linear decision boundary is an imaginery line that separates data classes



How to draw such a line?

Consider a linear classifier

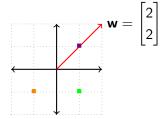
$$sign(\mathbf{w}^T\mathbf{x})$$

for binary classification where class label y is either 1 or -1

- This classifier predicts -1 if $\mathbf{w}^T \mathbf{x} < 0$
- and predicts 1 if $\mathbf{w}^T \mathbf{x} > 0$

Concrete example [1/3]

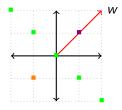
• For example, if $\mathbf{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$



• We see that, $\mathbf{w}^T \mathbf{x}_{violet} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}^T \begin{bmatrix} 1 \\ 1 \end{bmatrix} > 0$ and $\mathbf{w}^T \mathbf{x}_{orange} < 0$

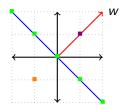
Concrete example [2/3]

• Now, observe that $\mathbf{w}^T \mathbf{x}_{green} = 0$.



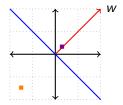
Concrete example [3/3]

- A set of points where $\mathbf{w}^T \mathbf{x} = 0$ defines the decision boundary.
- Geometrically, they are the points(vectors) which are perpendicular to
 w. (dot product is zero)



Note that changing size of \mathbf{w} does not change its decision boundary

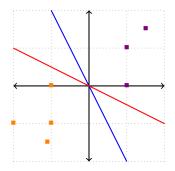
Decision boundary and prediction



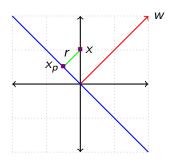
- Intuitively, we are more certain about the prediction of point that is far away from the boundary (orange point).
- while we are less sure about points lie closer to the decision boundary (violet point).

SVM's philosophy

- SVM makes use of such intuition and tries to find a decision boundary which is
 - 1 farthest away from data of both classes (maximum margin)
 - 2 predicts class labels correctly



Distance of x to the decision hyperplane



 $(r \times unit vector)$ • Represent $\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{||\mathbf{w}||}$

Jakramate Bootkrajang

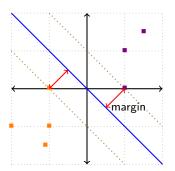
- Since $\mathbf{w}^T \mathbf{x}_p = 0$, we then have $\mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{x}_p + \mathbf{w}^T r \frac{\mathbf{w}}{||\mathbf{w}||}$
- In other words, $r = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||}$, (note that r is invariant to scaling of \mathbf{w} .)

Margin

- The distance from the closest point in the class to decision boundary is called margin
- Usually, we assume margin of positive class and margin of negative class are equal
- This means decision boundary is placed in the middle of the distance between any two closest points having different class labels.

SVM's goal = maximum margin

According to a theorem from learning theory, from all possible linear decision functions the one that maximises the (geometric) margin of the training set will minimise the generalisation error



Types of margins

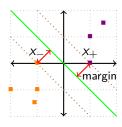
- Geometric margin: $r = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||}$
 - Normalised functional margin
- Functional margin: $\mathbf{w}^T \mathbf{x}$
 - ► Can be increased without bound by multiplying a constant to w.

Maximum (geometric) margin (1/2)

- Since we can scale the functional margin, we can demand the functional margin for the nearest points to be +1 and -1 on the two side of the decision boundary.
- Denoting a nearest positive example by x_+ and a nearest negative example by x_- , we have

$$w^T x_+ = +1$$

$$w^T x_- = -1$$



Maximum (geometric) margin (2/2)

 We then compute the geometric margin from functional margin constraints

$$\begin{aligned} \text{margin} &= \frac{1}{2} (\frac{\mathbf{w}^T \mathbf{x}_+}{||\mathbf{w}||} - \frac{\mathbf{w}^T \mathbf{x}_-}{||\mathbf{w}||}) \\ &= \frac{1}{2||\mathbf{w}||} (\mathbf{w}^T \mathbf{x}_+ - \mathbf{w}^T \mathbf{x}_-) \\ &= \frac{1}{||\mathbf{w}||} \end{aligned}$$

SVM's objective function

- Given a *linearly separable* training set $S = \{\mathbf{x}_i, y_i\}_{i=1}^m$.
- \bullet We need to find \boldsymbol{w} which maximises $\frac{1}{||\boldsymbol{w}||}$
- \bullet Maximising $\frac{1}{||\mathbf{w}||}$ is equivalent to minimising $||\mathbf{w}||^2$
- The objective of SVM is then the following quadratic programming

minimise:
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to: $\mathbf{w}^T\mathbf{x}_i \ge +1$ for $y_i = +1$ $\mathbf{w}^T\mathbf{x}_i \le -1$ for $y_i = -1$

SVM's philosophy: revisit

- SVM tries to find a decision boundary which is
 - 1 farthest away from data of both classes

minimise:
$$\frac{1}{2}||\mathbf{w}||^2$$

2 predicts class labels correctly

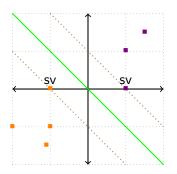
subject to:
$$\mathbf{w}^T \mathbf{x}_i \ge +1$$
 for $y_i = +1$ $\mathbf{w}^T \mathbf{x}_i \le -1$ for $y_i = -1$

• We can write the above as:

$$\operatorname{argmin}_{\mathbf{w}} \frac{1}{2} ||\mathbf{W}||^2 + \sum_{i=1}^{N} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$
 (1)

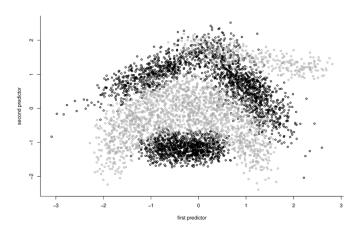
Support vectors

- The training points that are nearest to the decision boundary are called support vectors.
- Quiz: what is the output of our decision function for these points?



Non-linear data

What to do when data is not linearly separable?

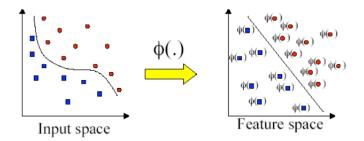


Non-linear classifiers

- First approach
 - Use non-linear model, e.g., neural network
 - (problems: many parameters, local minima)
- Second approach
 - Transform data into a richer feature space (including high dimensioal/non-linear features), then use a linear classifier

Learning in the feature space

Map data into a feature space where they are linearly separable



Feature transformation function

- It is computationally infeasible to explicitly compute the image of the mapping $\phi()$
- because some $\phi()$ even maps \mathbf{x} into infinite dimensional space
- \bullet Instead of explicitly calculating $\phi(\mathbf{x})$ we can focus on the relative similarity between the mapped data
- That is, we calculate $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$ for all i, j

Kernel

• A kernel is a function that gives the dot product between the vectors in feature space induced by the mapping ϕ .

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

In a matrix form, a kernel matrix (a.k.a Gram matrix) is given by

$$K = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_j) & \dots & K(x_1, x_m) \\ \vdots & \ddots & \vdots & & \vdots \\ K(x_i, x_1) & \dots & K(x_i, x_j) & \dots & K(x_1, x_m) \\ \vdots & & \vdots & \ddots & \vdots \\ K(x_m, x_1) & \dots & K(x_m, x_j) & \dots & K(x_m, x_m) \end{bmatrix}$$

Kernel

 Each row of K is regarded as a trasformed data point, and K can be used in place of data matrix in training classification models

$$K = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_j) & \dots & K(x_1, x_m) \\ \vdots & \ddots & \vdots & & \vdots \\ K(x_i, x_1) & \dots & K(x_i, x_j) & \dots & K(x_1, x_m) \\ \vdots & & \vdots & \ddots & \vdots \\ K(x_m, x_1) & \dots & K(x_m, x_j) & \dots & K(x_m, x_m) \end{bmatrix}$$

Example 1: Polynomial kernel

 mapping x, y points in 2D input to 3D feature space (note y is a data point not class label in this slide)

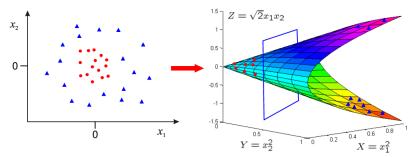
$$\mathbf{x}_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

ullet The corresponding mapping ϕ is

$$\phi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \quad \phi(\mathbf{y}) = \begin{bmatrix} y_1^2 \\ \sqrt{2}y_1y_2 \\ y_2^2 \end{bmatrix}$$

- So we get a polynomial kernel $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y}) = (\mathbf{x}^T \mathbf{y})^2$
 - ▶ of degree 2

Visualising



- Data is linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

Figure: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf

 SVM with Polynomial kernel https://www.youtube.com/watch?v=3liCbRZPrZA

Kernels: Gaussian (rbf) kernel

A Gaussian kernel is defined as

$$K(\mathbf{x}, \mathbf{y}) = e^{-||\mathbf{x} - \mathbf{y}||^2/\sigma}$$

- ullet The mapping for Gaussian kernel $\phi()$ is of infinite dimensions
- $oldsymbol{\sigma}$ is kernel parameter called 'kernel width', which must be chosen carefully
- ullet Large σ assumes that neighburhood of ${f x}$ spread further
- ullet Small σ assumes small area of neighourhood

Overlapping data?

- We can not hope for every data being perfectly separable (both linearly and non-linearly)
- This includes naturally overlapping classes
- And also datasets which are quite noisy
 - Originally separable but due to some noise the observed data is not.
- If we try to apply SVM to this kind of data, there will be no solution
 - Since we require that all data must be correctly classified

Regularised SVM (1/3)

We will relax constraint

subject to:
$$\mathbf{w}^T \mathbf{x}_i \ge +1$$
 for $y_i = +1$ $\mathbf{w}^T \mathbf{x}_i \le -1$ for $y_i = -1$

To

subject to:
$$\mathbf{w}^T \mathbf{x}_i \ge +1 - \xi_i$$
 for $y_i = +1$
 $\mathbf{w}^T \mathbf{x}_i \le -1 + \xi_i$ for $y_i = -1$

Regularised SVM (2/3)

- ξ_i s are called the slack variables
- Our new objective is then

minimise:
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i$$
 subject to:
$$\mathbf{w}^T \mathbf{x}_i \ge +1 - \xi_i \text{ for } y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i \le -1 + \xi_i \text{ for } y_i = -1$$

$$\xi_i > 0 \text{ for all } i$$

Regularised SVM (3/3)

- Parameter C controls the trade-off between fitting the data well and allowing some slackness
- Predictive performance of SVM is known to depend on C paramater
 - ▶ Picking *C* usually done via cross-validation

Example of various C settings

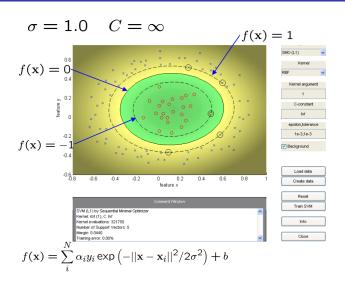
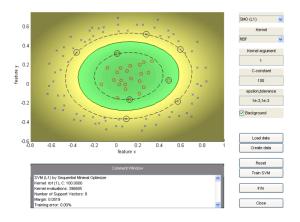


Figure: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf

Jakramate Bootkrajang CS456: Machine Learning 33 / 40

Example of various C settings

$$\sigma = 1.0$$
 $C = 100$



Decrease C, gives wider (soft) margin

Figure: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf

Example of various C settings

$$\sigma = 1.0 \quad C = 10$$

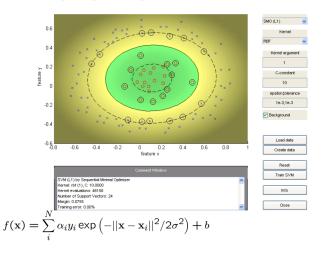


Figure: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf

SVM in sklearn

Python's sklearn implements SVM in svc function

sklearn.svm.SVC

class sklearn.svm.svc(C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0 cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)

SVC parameters

We have seen all of the important parameters (gamma is σ in the slide)

Parameters:

C: float, optional (default=1.0)

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared I2 penalty.

kernel: string, optional (default='rbf')

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

degree: int, optional (default=3)

Degree of the polynomial kernel function ('poly'). Ignored by all other kernels.

gamma: {'scale', 'auto'} or float, optional (default='scale')

Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

- if gamma='scale' (default) is passed then it uses 1 / (n features * X.var()) as value of gamma,
- if 'auto', uses 1 / n features.

SVC example

An example of using SVC

```
import numpy as np
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
from sklearn.svm import SVC
clf = SVC(gamma='auto')
clf.fit(X, y)
print(clf.predict([[-0.8, -1]]))
```

Objectives: revisited

- To understand what decision boundary is
- To understand how SVM works and be able to apply SVM model effectively
- To understand what kernel is, and be able to choose appropriate kernel

Lastly

Questions please ..