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@ To understand issues found in high-dimensional space
@ To understand what principal component in PCA is

@ Be able to apply PCA for realworld problem
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Outlines

@ Curse of Dimensionality

@ Principal Component Analysis (PCA)
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High dimensional data

@ The working of machine learning algorithms depends in some way on
the geometry of data

> lengths of vectors, distances, angles

@ High dimensional geometry is different from low dimensional geometry
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What happens in HD? [1/2]

Concentration of norms: generate points in m-dimensional space and

measure their lengths
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What happens in HD? [2/2]

Near-orthogonality: generate points in m-dimensional space and measure

their angles
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Curse of Dimensionality

@ We can see from the plots that
» As m increases, any two random vectors end up being orthogonal to
each other
» As m increases, any random vectors ends up having about the same
length
@ We also need a lot (exponentially) more data to cover the space as m

increases

@ Training time is also increased significantly as m grows

Jakramate Bootkrajang CS456: Machine Learning March 5, 2020 7/30



Bless of dimensionality

@ Surprisingly, high dimensionality makes data more linearly separable

@ Think of kernel method, or feature learnt by convolutional neural
networks

@ It is easier for algorithm to find separating hyperplane

» providing that there's no noise in data
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Dimensionality reduction approaches

@ Feature selection
» Find subset of features
e Feature projection (feature extraction)

> learn a function ¢(-) which transforms data from HD to lower
dimensional space

> In general, we aim at minimising reconstruction error

€recon = ||X_ ¢71(¢(X))H2
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Principal Component Analysis (PCA)
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Introduction

@ An unsupervised algorithm for dimensionality reduction

@ Reduce dimensionality of the data while trying to preserve data

structure
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Intuition

Find low-dimensional projection with largest spread

Figure: Applied Multivariate Statistics: ETZ
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Toy data

Assuming data is in 2D space

. .: .'.

Figure: Applied Multivariate Statistics: ETZ
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Standard Basis

@ Normally, data lives In the standard basis defined by two basis vectors

{lo 1,11 o} *

° Standard basis

LA basis is a set of linearly independent vectors that can represent any vector in a
given vector space
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Other basis systems

@ Imagine using another valid basis system

@ Observe: data is more spread along one of the new basis directions
(orange vector)
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@ Find new basis system that maximises variance in all directions

@ These directions are known as Principal Components (PC)
@ Hopefully we can select a few of these PCs and project the data onto

this new basis
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Projection onto one direction

! 2t
- X a| .
@ Projection of a vector x = on to a vector a = is the
xM am

linear combination

@ Usually, a is kept as a unit vector
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Projection onto multiple directions

@ To generalise one direction projection, the projection of x onto a set
of linearly independent vectors (basis) A is

T
1.1 .1
9 9 a3 ! 1
2 2 2 p
T aj a5 a5
Alx=| - = =P
: : : s
dp dy a3

@ p is a vector in 3D space , compared to the original x in mD space
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Data spread after a projection

@ Assumed data matrix X and its projection a’ X are mean-centred

@ The spread of the projection is
o2=(a'X)(a’™x)7
—a'XX"a
—a'Va

@ We see that spread is a function of projection direction a and m x m

covariance matrix V
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Objective function of projection direction

e Maximising a’ Va makes no sense, because we can increase the

spread by multiplying a by some large number

T

@ We have to impose size constraint on a, e.g., a'a=1

@ We then arrive at an objective function
u=a'Va—\a'a—1)

@ )\ > 0 is a parameter imposing the size constraint 2
» Think of A like the C parameter in SVM

2lts name is Lagrange multiplier often employed in constrained optimisation
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Maximising the spread

@ Objective function is convex, calculus helps finding stationary point
o Differentiating the objective function w.r.t a and equating to zero
du
— =2Va—2Xa=0 1
9a (1)
Va = )\a (2)
@ Eq.(2) is one type of Linear system of equations called the

Characteristic Equations

o If we can solve the system for a we will have maximum spread

direction
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Characteristic Equations

Va = )a

@ For an m x m, real and symmetric matrix V, there are m possible

solution vectors

@ For symmetric matrices, eigenvectors for distinct eigenvalues are

orthogonal

Each of the solutions a; is known as eigenvector of V

@ Each eigenvector is associated with an eigenvalue A;
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Eigenvector problem refresher
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Eigenvector and Eigenvalue

Definition
A nonzero vector X is an eigenvector of a square matrix A if there exists a

scalar A such that

Ax = A\x

@ )\ is an eigenvalue of A associated with eigenvector x

@ The zero vector can not be an eigenvector even though
A0 =)0

@ But A = 0 can be an eigenvalue
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Example, solving for eigenvectors

e Given A = [% %} find its eigenvectors and eigenvalues

@ Solution:
1 from definition Ax = Ax
2 (A=Ahx=0
3 Since x is nonzero, we know that (A — Al) is not invertible
4 So determinant of (A — Al) must be zero
5 A=A =0
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Summarising

The m eigenvectors form to a new basis system

The eigenvector a with largest eigenvalue is the projection direction

with maximum spread (most important)

o PCA selects k most important from m eigenvectors where k < m
@ PCA projects dataset X onto the new basis formed by k eigenvectors
T
1 .1 1
ay a; ... a
2 2 2
aj a5 ... a
° X, = .1 .2 . .k X
a' ay ... ay
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Practical usage

@ Standardising X

Calculate a covariance matrix V= XX

Find all the eigenvectors of V

@ Select k most important principal components according to
eigenvalues and put it in a matrix A

Project X onto A by calculating X, = ATX

@ The reducted data is in X,
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How to choose k?

@ The structure of data can be defined as sum of spreads in all direction
e From Va; = \ja;, we see that \; quantifies the spread of data after
projecting on a;
@ The loss in structure information by selecting only k PCs is
Z/flk—i—l Ai
27;1 Ai
@ Usually, we stop throwing PCs away when the loss exceeds the
predefined threshold
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Computational Issue

e Computing V takes O(nm?)

e PCA complexity is then O(nm?) 4+ Complexity of solving eigenvector

@ PCA can be applied to large dataset (scale well with n) but it does
not scale well with dimensionality m

» Slow for high-dimensional data
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Objectives: revisited

@ To understand issues found in high-dimensional space
@ To understand what principal component in PCA is

@ Be able to apply PCA for realworld problem
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