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Objectives

To understand issues found in high-dimensional space
To understand what principal component in PCA is
Be able to apply PCA for realworld problem
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Outlines

Curse of Dimensionality
Principal Component Analysis (PCA)
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High dimensional data

The working of machine learning algorithms depends in some way on
the geometry of data

▶ lengths of vectors, distances, angles

High dimensional geometry is different from low dimensional geometry
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What happens in HD? [1/2]

Concentration of norms: generate points in m-dimensional space and
measure their lengths

Figure: Credit: A.Kaban, CS-Bham
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What happens in HD? [2/2]

Near-orthogonality: generate points in m-dimensional space and measure
their angles

Figure: Credit: A.Kaban, CS-Bham
Jakramate Bootkrajang CS456: Machine Learning March 5, 2020 6 / 30



Curse of Dimensionality

We can see from the plots that
▶ As m increases, any two random vectors end up being orthogonal to

each other
▶ As m increases, any random vectors ends up having about the same

length

We also need a lot (exponentially) more data to cover the space as m
increases
Training time is also increased significantly as m grows
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Bless of dimensionality

Surprisingly, high dimensionality makes data more linearly separable
Think of kernel method, or feature learnt by convolutional neural
networks
It is easier for algorithm to find separating hyperplane

▶ providing that there’s no noise in data
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Dimensionality reduction approaches

Feature selection
▶ Find subset of features

Feature projection (feature extraction)
▶ learn a function ϕ(·) which transforms data from HD to lower

dimensional space
▶ In general, we aim at minimising reconstruction error

ϵrecon = ||X − ϕ−1(ϕ(X))||2
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Principal Component Analysis (PCA)
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Introduction

An unsupervised algorithm for dimensionality reduction
Reduce dimensionality of the data while trying to preserve data
structure
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Intuition

Find low-dimensional projection with largest spread

Figure: Applied Multivariate Statistics: ETZ
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Toy data

Assuming data is in 2D space

Figure: Applied Multivariate Statistics: ETZ
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Standard Basis

Normally, data lives In the standard basis defined by two basis vectors
{[0 1], [1 0]} 1

1A basis is a set of linearly independent vectors that can represent any vector in a
given vector space
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Other basis systems

Imagine using another valid basis system

Observe: data is more spread along one of the new basis directions
(orange vector)
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Ideas

Find new basis system that maximises variance in all directions
These directions are known as Principal Components (PC)
Hopefully we can select a few of these PCs and project the data onto
this new basis
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Projection onto one direction

Projection of a vector x =


x1

x2

. . .

xm

 on to a vector a =


a1

a2

. . .

am

 is the

linear combination

aTx =
m∑

i=1
aixi

Usually, a is kept as a unit vector
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Projection onto multiple directions

To generalise one direction projection, the projection of x onto a set
of linearly independent vectors (basis) A is

ATx =


a1

1 a1
2 a1

3
a2

1 a2
2 a2

3
... ... ...

am
1 am

2 am
3


T 

x1

...
xm

 =

 p1

p2

p3



p is a vector in 3D space , compared to the original x in mD space
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Data spread after a projection

Assumed data matrix X and its projection aTX are mean-centred
The spread of the projection is

σ2
a = (aTX)(aTX)T

= aTXXTa
= aTVa

We see that spread is a function of projection direction a and m × m
covariance matrix V
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Objective function of projection direction

Maximising aTVa makes no sense, because we can increase the
spread by multiplying a by some large number
We have to impose size constraint on a, e.g., aTa = 1
We then arrive at an objective function

u = aTVa − λ(aTa − 1)

λ > 0 is a parameter imposing the size constraint 2

▶ Think of λ like the C parameter in SVM

2Its name is Lagrange multiplier often employed in constrained optimisation
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Maximising the spread

Objective function is convex, calculus helps finding stationary point
Differentiating the objective function w.r.t a and equating to zero

∂u
∂a = 2Va − 2λa = 0 (1)

Va = λa (2)

Eq.(2) is one type of Linear system of equations called the
Characteristic Equations
If we can solve the system for a we will have maximum spread
direction
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Characteristic Equations

Va = λa

For an m × m, real and symmetric matrix V, there are m possible
solution vectors
For symmetric matrices, eigenvectors for distinct eigenvalues are
orthogonal
Each of the solutions ai is known as eigenvector of V
Each eigenvector is associated with an eigenvalue λi
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Eigenvector problem refresher
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Eigenvector and Eigenvalue

Definition
A nonzero vector x is an eigenvector of a square matrix A if there exists a
scalar λ such that

Ax = λx

λ is an eigenvalue of A associated with eigenvector x
The zero vector can not be an eigenvector even though

A0 = λ0

But λ = 0 can be an eigenvalue
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Example, solving for eigenvectors

Given A =
[

2 1
1 2

]
, find its eigenvectors and eigenvalues

Solution:
1 from definition Ax = λx
2 (A − λI)x = 0
3 Since x is nonzero, we know that (A − λI) is not invertible
4 So determinant of (A − λI) must be zero
5 |A − λI| = 0
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Summarising

The m eigenvectors form to a new basis system
The eigenvector a with largest eigenvalue is the projection direction
with maximum spread (most important)
PCA selects k most important from m eigenvectors where k < m
PCA projects dataset X onto the new basis formed by k eigenvectors

Xr =


a1

1 a1
2 . . . a1

k
a2

1 a2
2 . . . a2

k
... ... ... ...

am
1 am

2 . . . am
k


T

X
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Practical usage

Standardising X
Calculate a covariance matrix V = XXT

Find all the eigenvectors of V
Select k most important principal components according to
eigenvalues and put it in a matrix A
Project X onto A by calculating Xr = ATX
The reducted data is in Xr
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How to choose k?

The structure of data can be defined as sum of spreads in all direction
From Vai = λiai, we see that λi quantifies the spread of data after
projecting on ai

The loss in structure information by selecting only k PCs is∑m
i=k+1 λi∑m

i=1 λi

Usually, we stop throwing PCs away when the loss exceeds the
predefined threshold
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Computational Issue

Computing V takes O(nm2)

PCA complexity is then O(nm2) + Complexity of solving eigenvector
PCA can be applied to large dataset (scale well with n) but it does
not scale well with dimensionality m

▶ Slow for high-dimensional data

Jakramate Bootkrajang CS456: Machine Learning March 5, 2020 29 / 30



Objectives: revisited

To understand issues found in high-dimensional space
To understand what principal component in PCA is
Be able to apply PCA for realworld problem
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