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@ Understand the basic concepts of data classification
@ Able to tell the difference(s) between regression and classification

@ Get a big picture of classification models categorisation
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Motivation

Definition

o Classification vs Regression

Linear vs non-linear machine

Example of classification tasks

Major challenges in classification
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@ Suppose there is a fish canning factory which processes two types of
fish Sardine and Trout
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Motivation

@ It might be more cost effective if we have a robotic arm which can
‘automatically’ separate sardine and trout.

(a) sardine (b) trout
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How do we program such a robot ?

Classical approach: encode everything we know about the fish in our code

if 10 < length < 30 and 1 < weight < &:
print("Sardine")
else:

print ("Trout")

Problems ?
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Problems with classical approach

@ Our knowledge is incomplete (low accuracy)

@ Our robot program might end up being super complicated

@ Our robot is not adaptive

> In the future sardine, in general, might get smaller
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Alternative approach

@ Let's extract some physical characteristics from sardine and trout

> e.g., length, weight, colour, existence of body patterns, etc

And find relationship between physical characteristics and fish types

Mathematically, find a function which maps from physical

characteristics (features) to fish category (label)

This is a machine learning based classification approach
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Definition
Given a set of features/label pairs {(x1,y1), (x2,¥2), ..., (Xn, ¥n)}, where
x; € R™ and y; € {1,..., K}, a classification task is a task of inferring a

real-valued function f{x) which maps features to its corresponding class

label with high accuracy.
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Definition

e f{) is called a classifier

e Each classification model has different functional form f{) from the

others

e Adjusting function parameters is accounted for the learning part !

! There exist classifiers which do not assume function form such as k-NN, Decision

Tree. Such classifiers are called non-parametric models (won't be:covered in-this class)
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The goal of learning

@ To minimise classifier error

@ Classification error is defined as
N

€= 30y # fx) o
i=1

@ Delta function, 6(q) returns 1 if the logical expression q is true, and

returns 0 otherwise

@ Note that accuracy is the inverse of error
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Classification vs Regression

@ Regression

» For (x,y), the output y is called the target and y € R

o Classification
» For (x,y), the output y is called the class label and y € 7
» Output from regression model can be transformed into label prediction

by thresholding

@ Both belong to supervised learning paradigm
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Types of classifier by functional form
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@ Linear

» Assumes data is separable using linear decision boundary

> Least Square Classifier, Logistic regression, Support Vector Machine,
Neural networks without hidden layer

@ Non-linear
» Assumes data is separable using non-linear decision boundary

» SVM (with kernel), Neural networks, Ensemble of classifiers (boosting),
Quadratic Discriminant Analysis
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Pros/Cons of linear vs nonlinear

o Linear
» Works well in linearly separable data

» May underfit in complex cases

@ Non-linear
» Works well in linearly inseparable data

» May overfit in simpler cases

Under fitting in Classification Over fitting in Classification
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Classification tasks/applications

Binary classification

Multiclass classification

@ Multi-label classification

@ One-class classification

Openset classification
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Multi-class vs multi-label

Multi-class: there are K > 2 data classes and one input can belong to only
one class

Multi-label: there are K > 2 data classes and one input can belong to
more than one class

Multi-Class Multi-Label
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Application: medical diagnosis etc.
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One class classification
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Application: person identification, object detection
Negative examples are often countless: impractical to use binary

classification
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Open set classification
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Figure credit 2

2| azzeratti et al.: A new approach for event classification and novelty detection in
power distribution networks
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Major challenges

Dataset size vs model complexity (e.g., the number of parameters)

o Data dimensionality
@ Incorrect features / labels

@ Class imbalance

Data distribution is dynamic
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Objectives: revisited

@ Understand the basic concepts of data classification
@ Able to tell the difference(s) between regression and classification

@ Get a big picture of classification models categorisation

Jakramate Bootkrajang CS456: Machine Learning



Questions please ..
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