CS456: Machine Learning

Logistic Regression

Jakramate Bootkrajang

Department of Computer Science Chiang Mai University

Objectives

- To understand how Logistic Regression works
- To understand what likelihood and log-likelihood is
- To understand basic concept of gradient descent optimisation method

Outlines

- LR's philosophy
- Sigmoid function
- Likelihood, log-likelihood and negative log-likelihood
- Gradient descent
- LR in sklearn

Decision boundary and prediction

- Recall that we are more certain about the prediction of point that is far away from the boundary (orange point).
- while we are less sure about points lie closer to the decision boundary (violet point)

Probability supporting prediction

- Unlike SVM, Logistic Regression converts the distance into probability which increases as the distance from decision boundary increases
- This is done by using the sigmoid function $\frac{1}{1+e^{-t}}$ where $e \approx 2.71828...$

Sigmoid function

The function, $\frac{1}{1+e^{-t}}$, maps real-valued input t to [0,1] range

Probability for the positive class

- LR uses $\sigma(\mathbf{w}^T\mathbf{x})$ to represent the probability that \mathbf{x} comes from positive class (y=1)
- ullet The probability is denoted as $p(y=1|\mathbf{x})=rac{1}{1+e^{-\mathbf{w}^T\mathbf{x}}}$
- ullet The probability is 0.5 when ${f x}$ is on the decision boundary

What about the negative class?

- Negative examples are the ones with $\mathbf{w}^T \mathbf{x} < 0$
- We want a function which is the opposite of the sigmoid i.e., its value increases as w^Tx decreases

Function for negative class

The function, $\frac{e^{-t}}{1+e^{-t}},$ maps real-valued input t to $\left[0,1\right]$

Probability for the negative class

- LR uses $1 \sigma(\mathbf{w}^T \mathbf{x})$ to represent the probability that \mathbf{x} comes from negative class
- The probability is denoted as $p(y=-1|\mathbf{x})=\frac{e^{-\mathbf{w}^T\mathbf{x}}}{1+e^{-\mathbf{w}^T\mathbf{x}}}=\frac{1}{1+e^{\mathbf{w}^T\mathbf{x}}}$
- \bullet The probability is 0.5 when \mathbf{x} is on the decision boundary

Putting them together

LR's philosophy

- Find a parameter w which
 - ▶ maximise $\sigma(\mathbf{w}^T\mathbf{x})$ for inputs from positive class
 - maximising $1 \sigma(\mathbf{w}^T \mathbf{x})$ for inputs from negative class
- Suppose there are N_- data points from negative class and N_+ data points from positive class, the probability for all data points is

$$\prod_{i=1}^{N_{-}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})) \prod_{j=1}^{N_{+}} \sigma(\mathbf{w}^{T} \mathbf{x}_{j})$$
 (1)

► This is valid under assumption that data points are independent from each other

Likelihood function

$$\prod_{i=1}^{N_{-}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})) \prod_{j=1}^{N_{+}} \sigma(\mathbf{w}^{T} \mathbf{x}_{j})$$

• Since $y_i \in \{-1,1\}$, the above expression can be written compactly as

$$\prod_{i=1}^{N} \sigma(y_i \mathbf{w}^T \mathbf{x}_j) := \mathcal{L}(\mathbf{w})$$
 (2)

• We call the above equation: the likelihood function

Log-likelihood function

 If we take logarithm of the likelihood function we end up with the log-likelihood function

$$IIh(\mathbf{w}) = \sum_{i=1}^{N} \log \sigma(y_i \mathbf{w}^T \mathbf{x}_j)$$
 (3)

- The IIh() is a function of parameter w
- There's also its negative version, negative log-likelihood

$$nllh(\mathbf{w}) = -\sum_{i=1}^{N} \log \sigma(y_i \mathbf{w}^T \mathbf{x}_j)$$
 (4)

Model learning

- Learning of the model is to find the best w which maximises IIh
- Or equivalently, minimising the negative log-likelihood function
- Does minimising some objective function sound familiar ?

The solution landscape

Where the best w is?

- It must be at the stationary point (gradient = 0)
- Let's find the gradient of the negative log-likelihood with respect to w
 (on the board)

Gradient of nllh

$$\nabla_{\mathbf{w}} n l l h = -\sum_{i=1}^{N} (1 - \sigma(y_i \mathbf{w}^T \mathbf{x}_i)) y_i \mathbf{x}_i$$

Equating the above to zero yields...

$$-\sum_{i=1}^{N} (1 - \sigma(y_i \mathbf{w}^T \mathbf{x}_i)) y_i \mathbf{x}_i = 0$$
 (5)

Unfortunately, we cannot isolate \mathbf{w} to get a closed-form solution

Gradient descent

Need to use iterative method e.g., gradient descent of the form

$$\mathbf{w}^{new} = \mathbf{w}^{old} - \eta \nabla_{\mathbf{w}} n l l h \tag{6}$$

Gradient of a function always points in direction which increases function value, so we update \mathbf{w} to the opposite direction

$$\nabla_{\mathbf{w}} n l l h = -\sum_{i=1}^{N} (1 - \sigma(y_i \mathbf{w}^T \mathbf{x}_i)) y_i \mathbf{x}_i$$
 (7)

Here η is the learning rate

Examples of Gradient

Figure: The direction of gradients are always towards higher function values (darker regions)

LR learning algorithm

- **1** Input data in the form $\{\mathbf{x}_i, y_i\}, i = 1 : N \text{ and } y_i \in \{-1, 1\}$
- ② Initialise random $1 \times m$ weight vector \mathbf{w} , (m) is data dimension)
- Repeat until convergence (no change in w)

$$\mathbf{w}^{new} = \mathbf{w}^{old} - \eta \nabla_{\mathbf{w}} n l l h$$

① To classify new data \mathbf{x}_q , decide $y_q=1$ if $p(y_q=1|\mathbf{x}_q)=\frac{1}{1+e^{-\mathbf{w}^T\mathbf{x}_q}}>0.5$

LR in sklearn

Sklearn uses $y = \{0, 1\}$ notation.

Objectives: revisited

- To understand how Logistic Regression works
- To understand what likelihood and log-likelihood is
- To understand basic concept of gradient descent optimisation method

Lastly

Questions please ..