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Objectives

To understand the philosophy behind discriminant analysis classifier

To understand how to learn discriminant analysis model

To understand Bayes rule

To understand the difference between discriminative and generative
classfiers
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Outlines

Discriminant Analysis

Parameters estimation

Bayes rule

Plotting decision boundary

Generative vs Discriminative
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Probability supporting prediction

w
•• •

•• •

Recall how LR converts the distance into probability which increases
as the distance from decision boundary increases

using the sigmoid function p(y = 1|x,w) = 1
1+e−wTx
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Discriminant Analysis approach (1/2)

•• •

•• •

A discriminant analysis model takes different approach

It does not look for a weight vector w and therefore there is no
decision boundary to begin with
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Discriminant Analysis approach (2/2)

•• •

•• •

Instead, DA tries to model data distributions for each classes

Usually, it assumes that data is approximately normally distributed

This corresponds to modelling step
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(Multivariate) Normal Distribution

•• •

•• •µ

Each of the circles, represent a single multivariate normal distribution
with µ as its center and with Σ specifying data spread

p(x|µ,Σ) =
exp

(
− 1

2 (x−µ)TΣ−1(x−µ)

)
√

(2π)m|Σ|
is its density function 1

1gives (relative) probability that x comes from this distribution (aka data likelihood)
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How to estimate µ and Σ (model learning)

Let N+ be the size of data in positive class and N− be the size of
data in negative class, we estimate

µ+ = 1
N+

∑N+

i=1 xi

µ− = 1
N−

∑N−
i=1 xi

Σ+ = 1
N+

∑N+

i=1(xi − µ+)(xi − µ+)
T

Σ− = 1
N−

∑N−
i=1(xi − µ−)(xi − µ−)

T
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How to get probability of class label ?

What we have so far is the relative probiliity p(x|µ,Σ) (data
likelihood)

But to predict if class label is 1 we need p(y = 1|x)

Similarly, to predict if class label is -1 we need p(y = −1|x)

How to get such quantity ?
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The Bayes rule

There is Bayes rule which links the two quantities

p(y|x) = p(x|y)p(y)
p(x) (1)

p(y|x) is class posterior probability

p(x|y) is data likelihood

p(y) is class prior probability

p(x) is data evidence: normaliser to make p(y|x) ∈ [0, 1]
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The Bayes rule in our context

Using Bayes rule

p(y|x) = p(x|y)p(y)
p(x)

in our context,

p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x) (2)

=
p(x|µ+,Σ+)p(y = 1)

p(x|y = 1)p(y = 1)p(x|y = −1)p(y = −1) (3)
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Class probability for negative class

Also using Bayes rule we can calculate probability that x belongs to
negative class

p(y = −1|x) = p(x|y = −1)p(y = −1)
p(x) (4)

=
p(x|µ−,Σ−)p(y = −1)

p(x|y = 1)p(y = 1)p(x|y = −1)p(y = −1) (5)
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How to compute p(y = 1) and p(y = −1) ?

p(y = 1) and p(y = −1) are called class prior probability

It specifies how likely we observe positive class (and negative class) in
general

Can be inferred from data p(y = 1) = N+

N , p(y = −1) = N−
N

Or assumed based on prior knowledge
▶ If y = 1 is class of female, and y = −1 is class of male, we expect

p(y = 1) = 0.5 and p(y = −1) = 0.5

Jakramate Bootkrajang CS456: Machine Learning 13 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discriminant Analysis in summary

1 Input data in the form {(xi, yi)}, i = 1 : N and yi ∈ {−1, 1}
2 Infer p(y = 1) and p(y = −1) from data
3 Estimate µ+, Σ+, µ− and Σ− from data
4 To predict class label of xq

p(y = 1|xq) =
p(xq|µ+,Σ+)p(y = 1)

p(xq|y = 1)p(y = 1)p(xq|y = −1)p(y = −1)

p(y = −1|xq) =
p(xq|µ−,Σ−)p(y = −1)

p(xq|y = 1)p(y = 1)p(xq|y = −1)p(y = −1)

5 Predict yq = 1 if p(y = 1|xq) > p(y = −1|xq)

6 Else predict yq = −1
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Wait, where’s the decision boundary?

You probably noticed that there’s no explicit decision boundary for DA

For, DA we did not assume any kind of functional decision boundary
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Plotting the (implicit) decision boundary

However, we can still visualise the boundary by observing the points
where prediction change from -1 to 1

https://colab.research.google.com/drive/
1Eacymr2skXvIv0N2y-a2NQSK5kokJhkB
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Shape of the decision boundary

The shape of decision boundary changes with types of the covariances

1 Two classes use common covariance (linear)
▶ aka. linear discriminant analysis

2 Two classes use their own covariances (non-linear)
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Generative VS discriminative

There are two types of parametric classification model

1 Discriminative classifier
▶ Model the decision boundary explicitly

▶ Example: SVM, Logistic regression

2 Generative classifier
▶ Model the occurrence of data using probability distribution

▶ decision boundary is not explicit

▶ Example: Discriminant analysis
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Objectives: revisited

To understand the philosophy behind discriminant analysis classifier

To understand how to learn discriminant analysis model

To understand Bayes rule

To understand the difference between discriminative and generative
classfiers
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Lastly

Questions please ..
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