CS456: Machine Learning

Mixture model

Jakramate Bootkrajang

Department of Computer Science Chiang Mai University

February 28, 2020

Jakramate Bootkrajang

CS456: Machine Learning

February 28, 2020 1 / 19

• To learn how to perform clustering using mixture model

< □ > < 同 >

- To learn how to perform clustering using mixture model
- To relate mixture model to k-means clustering

- Mixture model
- Gaussian Mixture Model (GMM) for clustering
- GMM learning algorithm

• Sometimes basic probability distribution cannot explain complex data

< □ > < 同 >

Overview

- Sometimes basic probability distribution cannot explain complex data
- Mixture model constructs complex probability distribution by linear combination of basis distributions

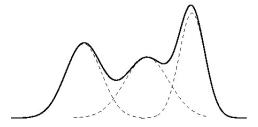


Figure: There's no distribution corresponds to black line but it can be explained by 3 Gaussians

• A probability distribution f is a mixture of K component distributions f_1, f_2, \ldots, f_K if

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

where π_k is the mixing weights and $\pi_k > 0$, $\sum_k \pi_k = 1$

• A probability distribution f is a mixture of K component distributions f_1, f_2, \ldots, f_K if

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

where π_k is the mixing weights and $\pi_k > 0, \sum_k \pi_k = 1$

• The distribution f can be any probabilistic distribution

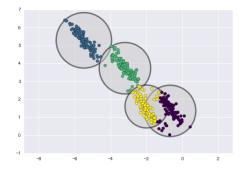
• A probability distribution f is a mixture of K component distributions f_1, f_2, \ldots, f_K if

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

where π_k is the mixing weights and $\pi_k > 0, \sum_k \pi_k = 1$

- The distribution *f* can be any probabilistic distribution
- Usually, people employ Gaussians (Normal distribution)

Mixture model for clustering



- Given a set of data, we would like to find basis distributions that when combined can explain the data (fit data) as much as possible
- Note: wo do not have access to y (correct cluster assignment)

Jakramate Bootkrajang

K-means' hard assignment

• Recall how k-means assign data point to a cluster based on some distance measure e.g., Euclidean distance

$$z_i = \arg\min_{k=1:K} d(\mathbf{x}_i, \mu_k)$$

K-means' hard assignment

• Recall how k-means assign data point to a cluster based on some distance measure e.g., Euclidean distance

$$z_i = \arg\min_{k=1:K} d(\mathbf{x}_i, \mu_k)$$

• For example if K = 3 we need to decide

$$z_i = \arg \min_{k=1:K} [0.2, 0.8, 1.3]$$

= 1

K-means' hard assignment

 Recall how k-means assign data point to a cluster based on some distance measure e.g., Euclidean distance

$$z_i = \arg\min_{k=1:K} d(\mathbf{x}_i, \mu_k)$$

• For example if K = 3 we need to decide

$$z_i = \arg \min_{k=1:\kappa} [0.2, 0.8, 1.3]$$

= 1

Function arg min hard assigns data point to cluster

 Instead of hard assignment, we can keep z_i as a vector representing the probabilities that x_i belongs to each of the clusters

- Instead of hard assignment, we can keep z_i as a vector representing the probabilities that x_i belongs to each of the clusters
- For example, if x_i is more likely to come from cluster 2 out of 3 possible clusters we have z_i = [0.01, 0.95, 0.04]

- Instead of hard assignment, we can keep z_i as a vector representing the probabilities that x_i belongs to each of the clusters
- For example, if **x**_i is more likely to come from cluster 2 out of 3 possible clusters we have $z_i = [0.01, 0.95, 0.04]$
- Note that z_i sums to 1 (probability that x_i belongs any of the 3 clusters must be 1)

• What are the probabilities in z_i , and how are they calculated ?

- What are the probabilities in z_i, and how are they calculated ?
- Essentially, each probabilities in z_i is the probability of z_i = k after we see x_i, which is p(z_i = k|x_i) ← soft label

- What are the probabilities in z_i, and how are they calculated ?
- Essentially, each probabilities in z_i is the probability of z_i = k after we see x_i, which is p(z_i = k|x_i) ← soft label
- By Bayes' rule we know that $p(z|x) = \frac{p(x|z)p(z)}{p(x)} = \frac{p(x|z)p(z)}{\sum_z p(x|z)p(z)}$
- It turns out to calculate cluster membership we first calculate

- What are the probabilities in z_i, and how are they calculated ?
- Essentially, each probabilities in z_i is the probability of z_i = k after we see x_i, which is p(z_i = k|x_i) ← soft label

• By Bayes' rule we know that
$$p(z|x) = \frac{p(x|z)p(z)}{p(x)} = \frac{p(x|z)p(z)}{\sum_z p(x|z)p(z)}$$

- It turns out to calculate cluster membership we first calculate
 p(x|z)
 - ▶ *p*(*z*)

• p(x|z) can be modelled by a probability distribution

- (日)

- p(x|z) can be modelled by a probability distribution
 - If we choose Normal distribution, p(x|z) is calculated by

$$p(x|z) = \mathcal{N}(x; \mu_z, \Sigma_z)$$

• p(x|z) can be modelled by a probability distribution

• If we choose Normal distribution, p(x|z) is calculated by

$$p(x|z) = \mathcal{N}(x; \mu_z, \Sigma_z)$$

• $p(z) := \pi$ is cluster prior probability

- p(x|z) can be modelled by a probability distribution
 - If we choose Normal distribution, p(x|z) is calculated by

$$p(x|z) = \mathcal{N}(x; \mu_z, \Sigma_z)$$

- $p(z) := \pi$ is cluster prior probability
 - It represents the ratio of the points we think they are in this cluster according to p(z|x) divided by total number of data points

•
$$p(z=1) = \frac{\sum_{i=1}^{N} p(z_i=1|x)}{N}$$

• We assume each clusters is modelled by some probability distribution e.g., Normal distribution,

$$p(x|z) = \mathcal{N}(x; \mu_z, \Sigma_z)$$

• We assume each clusters is modelled by some probability distribution e.g., Normal distribution,

$$p(x|z) = \mathcal{N}(x; \mu_z, \Sigma_z)$$

• Further we also assume probability of observing cluster $p(z) := \pi_z$

• We assume each clusters is modelled by some probability distribution e.g., Normal distribution,

$$p(x|z) = \mathcal{N}(x; \mu_z, \Sigma_z)$$

- Further we also assume probability of observing cluster $p(z) := \pi_z$
- Knowing the the two probabilities allows us to compute cluster membership probabilities p(z = k|x)

• We want to find μ, Σ, π which best describes the data

- We want to find μ, Σ, π which best describes the data
 - If it was a supervised learning we would have information of class label y, and estimating μ, Σ, π would be trivial
- We also want to find cluster assignment z (just like in k-means)

Estimating **z**

• If we fix μ, Σ, π , the values of **z** can be easily calculate using Bayes' rule

- If we fix μ, Σ, π , the values of **z** can be easily calculate using Bayes' rule
- For example if we assume 3 clusters

-
$$p(z_i = 1 | \mathbf{x}_i) = p(z_i = 1) \mathcal{N}(\mathbf{x}_i; \mu_1, \Sigma_1) / p(\mathbf{x}_i)$$

-
$$p(z_i = 2|\mathbf{x}_i) = p(z_i = 2)\mathcal{N}(\mathbf{x}_i; \mu_2, \Sigma_2)/p(\mathbf{x}_i)$$

-
$$p(z_i = 3 | \mathbf{x}_i) = p(z_i = 3) \mathcal{N}(\mathbf{x}_i; \mu_3, \Sigma_3) / p(\mathbf{x}_i)$$

- If we fix μ, Σ, π, the values of z can be easily calculate using Bayes' rule
- For example if we assume 3 clusters

-
$$p(z_i = 1 | \mathbf{x}_i) = p(z_i = 1) \mathcal{N}(\mathbf{x}_i; \mu_1, \Sigma_1) / p(\mathbf{x}_i)$$

-
$$p(z_i = 2|\mathbf{x}_i) = p(z_i = 2)\mathcal{N}(\mathbf{x}_i; \mu_2, \Sigma_2)/p(\mathbf{x}_i)$$

-
$$p(z_i = 3 | \mathbf{x}_i) = p(z_i = 3) \mathcal{N}(\mathbf{x}_i; \mu_3, \Sigma_3) / p(\mathbf{x}_i)$$

• This is equivalent to updating cluster assignment in k-means (but with soft label)

(NDA) (GMM)

$$\mu_k = \frac{\sum_{i=1}^{N_k} \mathbf{x}_i}{N} \qquad \qquad \mu_k = \frac{\sum_{i=1}^{N_k} \mathbf{p}(\mathbf{z}_i = \mathbf{k} | \mathbf{x}_i) \mathbf{x}_i}{N}$$

(NDA) (GMM) $\Sigma_{k} = \frac{\sum_{i=1}^{N_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}}{N} \qquad \Sigma_{k} = \frac{\sum_{i=1}^{N_{k}} p(z_{i} = k | \mathbf{x}_{i}) (\mathbf{x}_{i} - \mu_{k}) (\mathbf{x}_{i} - \mu_{k})^{T}}{N}$

(NDA)

$$\pi_k = \frac{N_k}{N} \qquad \qquad \pi_k = \frac{\sum_{i=1}^N p(z_i = k|x)}{N}$$

(GMM)

Likelihood function

- To measure how well μ, Σ, π describe the data
- we can calculate the likelihood for the model

$$\mathcal{L}(\mu, \Sigma, \pi; \{\mathbf{x}_i\}_{i=1}^N) = \prod_{i=1}^N f(\mathbf{x}_i) = \prod_{i=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k) \qquad (1)$$

- $\bullet\,$ To measure how well μ, Σ, π describe the data
- we can calculate the likelihood for the model

$$\mathcal{L}(\mu, \Sigma, \pi; \{\mathbf{x}_i\}_{i=1}^N) = \prod_{i=1}^N f(\mathbf{x}_i) = \prod_{i=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k) \qquad (1)$$

Obtaining the log-likelihood

$$IIh(\mu, \Sigma, \pi; \{\mathbf{x}_i\}_{i=1}^N) = \sum_{i=1}^N \log\left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k)\right)$$
(2)

GMM algorithm

- **1** Initialisation: choose k and initialise μ_k, Σ_k, π_k artibrarily for all k
- 2 Repeat until likelihood converges
 - estimate soft cluster assignment

$$p(z_i = k | \mathbf{x}_i) = \frac{p(z_i = k) \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k)}{\sum_k p(z_i = k) \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k)}$$

• update μ, Σ, π

$$\mu_{k} = \frac{\sum_{i=1}^{N_{k}} p(z_{i} = k | \mathbf{x}_{i}) \mathbf{x}_{i}}{N}$$
$$\Sigma_{k} = \frac{\sum_{i=1}^{N_{k}} p(z_{i} = k | \mathbf{x}_{i}) (\mathbf{x}_{i} - \mu_{k}) (\mathbf{x}_{i} - \mu_{k})^{T}}{N}$$
$$\pi_{k} = \frac{\sum_{i=1}^{N} p(z_{i} = k | \mathbf{x})}{N}$$

- To learn how to perform clustering using mixture model
- To relate mixture model to k-means clustering