CS456: Machine Learning

Artificial Neural Networks & Deep learning

Jakramate Bootkrajang

Department of Computer Science
Chiang Mai University

Jakramate Bootkrajang CS456: Machine Learning

To understand the philosophy behind neural networks classifier

To understand how to train neural network models

@ To understand the effect of important neural networks parameters

@ To understand what deep neural networks are

Jakramate Bootkrajang CS456: Machine Learning

A brief history of neural network

Multilayer neural network

Backpropagation

@ Deep neural network

» Convolutional neural networks (CNNs)

» Long-Short Term Memory (LSTM)

Jakramate Bootkrajang CS456: Machine Learning

Artificial Neural Networks

Jakramate Bootkrajang CS456: Machine Learning

Human brain

Facts of Human Brain

(complex, nonlinear and parallel computer)

* The brain contains about 10*° (100 Intel Pentium 4 1.5GHz
billion) basic units called neurons Number of transistors 4.2x107
* Each neuron connected to about 10% Power consumption up to 55 Watts

other neurons 0.1 kg cartridge w/o

¢ Weight: birth 0.3 kg, adult ~1.5 kg Weight fans, 0.3 kg with
¢ Power consumption 20-40W (~20% fan/heatsink
of body consumption) Maximum firing 15 GHz
* Signal propagation speed inside the frequency ’
axon ~90m/s in ~170,000 Km of axon Normal operating .
15-85°C
length for adult male temperature

* Firing frequency of a neuron ~250 —) 0 (if not overheated/
Sleep requirement
2000Hz overclocked)
+ Operating temperature: 37 2°C Processing of complex if can be done, takes a

¢ Sleep requirement: average 7.5 hours stimuli long time

(adult)

Jakramate Bootkrajang CS456: Machine Learning

A (biological) neuron

p— p— Post-synaptic neuron , ..o

Pre-synaptic neuron

Jakramate Bootkrajang CS456: Machine Learning

1940s: Artificial neuron

Warrent McCulloch (neuroscientist) and Walter Pitts (logician) modelled a

logic unit after the theories of how neuron works

T — —

Lol jl—’y e {0, 1}
) /\, /

1 AND lxy*

Figure: https:
//towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5ddl

Jakramate Bootkrajang CS456: Machine Learning

https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1

1950s: Perceptron

F.Rosenblatt’s perceptron with learnable weights

Weights
Constant

Weighted
Sum

inputs —
Step Function

Figure: https://towardsdatascience.com/
what-the-hell-is-perceptron-626217814£53

Jakramate Bootkrajang CS456: Machine Learning 8/86

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

1950s: Perceptron

Rosenblatt’s perceptron acts as linear function of inputs, w’x

Weights
Constant

Wo

Weighted
Sum

inputs —
Step Function

19 17

Jakramate Bootkrajang CS456: Machine Learning 9/86

1970s: XOR problem

M.Minsky showed that the perceptron is not suitable for non-linear
problems

AND OR XOR

1 @) 1 O 1 o

] 1 2} 1 2} 1

Figure: https://www.rawanyat.com/data-science/2018/1/25/

classification-via-perceptrons

Jakramate Bootkrajang CS456: Machine Learning

https://www.rawanyat.com/data-science/2018/1/25/classification-via-perceptrons
https://www.rawanyat.com/data-science/2018/1/25/classification-via-perceptrons

1980s: Al winter

No significant developments

Jakramate Bootkrajang CS456: Machine Learning

1990s: Multilayer perceptron

D.Rumelhart, G.Hinton put forward multilayer perceptron with non-linear
differentiable activation function and backpropagation algorithm to train

the model

Inputs x, (O ‘v"‘ " Outputs

Xim

Input layer Hidden layer Output layer
Figure: Shao, Changpeng. “A Quantum Model for Multilayer Perceptron.” (2018).

Jakramate Bootkrajang CS456: Machine Learning 12 /86

G.Hinton, Y.Lecun increased the depth of MLP and proposed ways to deal

with learning millions of parameters (weight sharing, pretraining)

= neuron
- .

S 7NN

oA - IREL _ \\

METHL o SRR \S ?

(e

?: "_-"‘/ , AR R N

S e RIAPEAR /5
:’f"-""‘ Y =+ ':‘.: O "

R R & SEMNN w
AN AR

) AR e — /2
—

Qutput
(prediction)

Input |
(features)

Hidden Layers
lots of layers ~ “deep learning”

Figure: https://mc.ai/

deep-learning-overview-of-neurons-and-activation-functions/

Jakramate Bootkrajang CS456: Machine Learning

https://mc.ai/deep-learning-overview-of-neurons-and-activation-functions/
https://mc.ai/deep-learning-overview-of-neurons-and-activation-functions/

The timeline

Deep Neural Network

(Pretraining)
Multi-layered
Perceptron
XOR
ADALINE (Backpropagation)
Perceptron
Dark Age (“Al Winter”)

Electronic Brain

a
S. McCulloch - W. Pitts F.Rosenblatt B, Widrow - M. Hoff

XANDY XORY NOTX

€— Bachard Ernor

FINZTY

. . ~XOR P - Soluion 0 nonineary separable problems _+ Limiatons o earing prior knowledge ~ Hierarcical feature Leagging
e g armed Lesmable Weights and Thrashok! OR Problem B Campuaton,) opuima and overting - Kemel ahchom Human mevemion” z
Jakramate Bootkrajar CS456: Machine Learni 14 /86

Neural network

@ A bio-inspired (directed) weighted graph where vertices (nodes) are

organised into sets, and any two sets of vertices may form bi-partite

graph.
@ Set of vertices is referred to as a layer

o Typically, there are three types of layer,

> input layer
> hidden layer

> output layers

@ The edges represent the weights

Jakramate Bootkrajang CS456: Machine Learning

Neural network layers

Al
w;/.
N
’r’}‘{‘?\‘

o‘o;o

72)
"

\"' tput layer

hidden layer 1 hidden layer 2

[
N
2

)

input layer

Note: Perceptron is neural network with no hidden layer

Jakramate Bootkrajang CS456: Machine Learning

Input layer

@ An interface where data enters the network

@ Usually, the size of the layer (number of nodes) equals to the

dimension of data

Jakramate Bootkrajang CS456: Machine Learning

Hidden layer

@ Hidden layer adds capacity to the network

@ The more the hidden layers, the higher the capacity

> able to represent complicated non-linear function

@ The number of hidden layers is referred to as depth of network
» while the number of neuron in one hidden layer is referred to as width

of layer

Jakramate Bootkrajang CS456: Machine Learning 18 /86

Output layer

@ A layer where prediction is made
@ The number of output nodes depends on dimension of y, the target
» regression: (usually) 1 output node

» binary classification: (usually) 1 output node

» multiclass classification: k output node, (k is the number of classes)

CS456: Machine Learning

Jakramate Bootkrajang

Node and its activation function

@ A node in neural network

> receives inputs,
> aggregates the results, (often using simple weighted sum)
> passes it through node's activation function

» sends the output as an input to nodes in the next layer

Jakramate Bootkrajang CS456: Machine Learning

Activation function

@ Mimic behaviour of synapes in human brain

@ Only send out information only if the input is strong enough

Jakramate Bootkrajang CS456: Machine Learning

Various Activation functions

Sigmoid Hyperbolic Tangent

1 /-— 1
Traditional
Non-Linear 0 0
Activation
: -1 -1
Functions 4 0 1 1 0 1
y=1/(1+e™) y=(eX-eX)/(e*+e™)
Rectifi?geLLirl}Tar Unit Leaky ReLU Exponential LU
1 1 1
Modern
Non-Linear g 0 0
Activation
Functions
-1 -1 -1
-1 0 1 - 0 1 0 1
X, ped]
y=max(@,x) y=max{ox,X) y={u(e¥—1) L x<@

a = small const. (e.g. 0.1)

Figure: V.Sze et.al.:Efficient Processing of Deep Neural Networks: A Tutorial and
Survey

Jakramate Bootkrajang

CS456: Machine Learning

Types of NNs

Fully connected NN

Recurrent NN

Lateral NN

Partially connected NN

Jakramate Bootkrajang CS456: Machine Learning

Fully connected neural network

A node from previous layer is connected to all nodes in the next layer

Hidden Hidden Hidden
Input layer 1 layer 2 layer 3
layer
Output
layer
Aol

Jakramate Bootkrajang CS456: Machine Learning

Recurrent neural network

A node from the next layer may be connected to nodes in the previous layer

Recurrent network

—— output layer

input layer (class/target)

k4
hidden layers: “deep” if > 1

Jakramate Bootkrajang CS456: Machine Learning

Lateral networks

There exists connections between nodes in the same layer

Input layer Hidden layer Qutput layer

Jakramate Bootkrajang CS456: Machine Learning

Partially connected NN

A sub-set of all possible connections of fully connected network. More

similar to human brain.

O
O

O/ O

Hidden layer (s) Dutput layer

Jakramate Bootkrajang CS456: Machine Learning

How to train NNs ?

@ Supervised learning (current focus)

@ Unsupervised learning

» e.g, for training a self-organising map, autoencoder

@ Reinforcement learning
» e.g, for training Deep Q Network (DQN)

Jakramate Bootkrajang CS456: Machine Learning

Feedforward and backpropagation (supervised learning)

input layer
hidden layer 1 hidden layer 2

e Data flow from left to right to generate output (feed forward)

@ The generated output will be compared with desired target so that we

can measure error (this is a form of supervised learning)

@ The error will back propagate in the reverse order from right to left

and are used to update weights along the way

Jakramate Bootkrajang CS456: Machine Learning

(Un)supervised learning

/2 R\
Eroder e
Hden yer 2 Hdenor 1
%00 notons 500 notons
. Ereoder oecodr
Hidentoyr 1 Hden oyr 2
F sconeuons 00 notons
ity Reconsuctoer
T nevons Toknodons

Figure: https://mc.ai/auto-encoder-in-biology/

@ Goal: to find the compact representation of inputs

@ Usually trained using backpropagation with the input itself as target

Jakramate Bootkrajang CS456: Machine Learning

https://mc.ai/auto-encoder-in-biology/

Reinforcement learning

Reward

Take

O
parameter 6

action

Observe state

Environment

https://java.works-hub.com/learn/using-deep-q-learning-in-fifa-18-to-perfect-the-art-of-free-kicks-9bf7f

Jakramate Bootkrajang

CS456: Machine Learning

31/86

https://java.works-hub.com/learn/using-deep-q-learning-in-fifa-18-to-perfect-the-art-of-free-kicks-9bf7f

Backpropagation

Jakramate Bootkrajang CS456: Machine Learning

Let's do a simple forward run

Given (x,y) = ([0.5,0.1], 1),

Input Hidden Output

Jakramate Bootkrajang CS456: Machine Learning 33/86

Measuring the error

@ For regression: Squared error
> Thsl-92
@ For binary classification: binary cross entropy (neg.log.likelihood)

> = S, (8(yi = 0)log(Po) + 8y = 1) log(P1)) for y € {0,1}

1

—wTx

» P is represented by the sigmoid function o

@ For multi-class classification: cross entropy

wlx

> — Z,,-V:1 Zf:l 0(yi = k) log(Px) for y € {1,..., K}, Px = ;7r

—wTx
ke K

» Py is represented by the softmax function

@ These are called loss function denoted £

Jakramate Bootkrajang CS456: Machine Learning 34 /86

Minimising the error

@ Minimising the error can be done by minimising the loss function

@ Standard gradient descent method can be employed

@ The optimisation plan

1 Decide the loss function for our problem
2 Find the derivative of the loss w.r.t wj; for all i, j

3 Update wj® = wf® —)V, L

Jakramate Bootkrajang CS456: Machine Learning

Problem with the plan

e It is quite inefficient, (repeated gradient calculation)

@ Therefore, not scalable to deep networks

@ Backpropagation solves this inefficiency by

» Computing the derivative of wj; in terms of derivative of weight in the

next layer w.r.t error

> instead of finding derivative of wj; w.r.t the final error

Jakramate Bootkrajang CS456: Machine Learning

Useful for finding derivative of a composite function

Oflg(h(x))) _ 9fla(h(x))) de(h(x))
Ox 0g(h(x)) Ox
_ Oflg(h()) D(h()) DH() "
dg(h(x)) Oh(x) Ox

Note: a neural network can be viewed as a big composite function

Jakramate Bootkrajang CS456: Machine Learning

Let's find the update rules (1/3)

N o2 . P
Assume £ = >0, %(y,- — §i)°, for node j, oj = o(netj) = o (3L wyjok)

oL 8L do;

Owj Bioj Owjj
~ OL Ooj Onet;

Oo;j Onet; Ow;j

k
Onet; 9 3211 Wijok -~

= ———— =9

Owj Ow;j
doj 13} tj

% M = o(net;)(1 — o(net;))
Onet; Onet;

Jakramate Bootkrajang CS456: Machine Learning

Let's find the update rules (2/3)

oL
Two cases for o,

1. node j is the output node, we know that §; = o;

oL 9N, Syi—)
80_,' 63\/1

Jakramate Bootkrajang CS456: Machine Learning

Let's find the update rules (3/3)

2. node j is intemediate node, o; acts as input to nodes in the next layer
[observation| o; affects £ via nety for all k in the next layer

oL 0L Onety
5oy~ 2 (net, 70,)

_ Z ((’35 0ok anetk> _ Z <§O£ka(netk)(1 - a(netk))wjk> (6)
K k

doy Onety 0o;

Recursion !! derivative w.r.t to o; depends on derivative w.r.t ok

Jakramate Bootkrajang CS456: Machine Learning 40/86

Backpropagation algorithm

Starting from output layer
o Calculate weight gradients
oL 0L Joj Onet;
Owjj Jojdnet; Ow;j
= 6jo; (7)

e if node i is output node
6j = —(y = ¥)o(net;)(1 — a(netj)) = —(y — 9)oj(1 — o))

e if node i is intermediate node 6; = (3, (wjd)))oj(1 — o))

o Update va-ew = VVZ-eW — naa—vﬁj — 775]-0[-

Jakramate Bootkrajang CS456: Machine Learning

Solution landscape

Objective function of MLP with hidden layers is non-convex (there are

multiple local optima)

Gradient descent may get stuck in local optima

Jakramate Bootkrajang CS456: Machine Learning

Stocastic Gradient descent (SDG)

Compute gradient based on small batch of data

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Might help escape local optima

CS456: Machine Learning

Jakramate Bootkrajang

Momentum

Just like in Physics, momentum helps moving object maintains direction

without momentum

with momentum

Momentum helps stochastic gradient descent reaches target quicker

Jakramate Bootkrajang CS456: Machine Learning

Learning rate and rate decay

Assumption: when near stationary point avoid jumpting too much as it

might overshoot the target

Too low Just right

100)) \\ 100) \\

Too high

/

e

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the
minimum point

Helps stay focus to the target

Jakramate Bootkrajang

CS456: Machine Learning

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Overfitting

The network was left learning for too long. It memorises trainining data

but cannot generalise

— tain_loss
val_joss

Remedies: early stopping, dropout, regularisation

Jakramate Bootkrajang CS456: Machine Learning

Convolutional Neural Network

Jakramate Bootkrajang CS456: Machine Learning

NN for visual related tasks

@ One of the most popular deep neural network models

@ Found its use in various visual recognition tasks
! ooisher| ?

Figure: https://neurohive.io/en/datasets/

new-datasets-for-3d-object-recognition/

Jakramate Bootkrajang CS456: Machine Learning

https://neurohive.io/en/datasets/new-datasets-for-3d-object-recognition/
https://neurohive.io/en/datasets/new-datasets-for-3d-object-recognition/

Typical computer vision pipeline

G — &y — s —

Input Feature extraction Classification Output

Fi gUre:l https://mc.ai/cnn-application-on-structured-data-automated-feature-extraction/

o Composed of two steps

» Feature extraction (requires domain knowledge)

» Classification step

Jakramate Bootkrajang CS456: Machine Learning

https://mc.ai/cnn-application-on-structured-data-automated-feature-extraction/

Deep NN based computer vision pipeline

& — 2737 - Il

Input Feature extraction + Classification Output

Fi ZUr€e: https://mc.ai/cnn-application-on-structured-data-automated-feature-extraction/

@ Train an end-2-end convolutional neural network

» No explicit feature extraction (Features are learned)

» Classification step

Jakramate Bootkrajang CS456: Machine Learning

https://mc.ai/cnn-application-on-structured-data-automated-feature-extraction/

Convolutional Neural Network

SF|])
==
o o
R
e
:
o o
RN
O\
IR
IR\
I
convolution + max pooling o Y
non! lmEBI’vly J °
convolution + pooling layers fully connected layers N binary classification

Fi ZUIE. https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

A deep neural network composed of Convolutional Layers for (trainable)
feature extraction part and Fully-connected NN for classification part

Jakramate Bootkrajang CS456: Machine Learning

https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Anatomy of CNN

@ Convolutional layer

@ Pooling layer

o Fully-connected layer

Jakramate Bootkrajang CS456: Machine Learning

Convolution operation motivation

Why ?
@ would like to detect some patterns within the input image
How 7
o define the patterns in a kernel /filter and perform pattern matching
» the output from this operation should indicate how likely the patterns
are found at the specific area

Jakramate Bootkrajang CS456: Machine Learning

Filter: image processing vs CNN

o Filter contains pattern which we want to detect from input image
@ In image processing filter is often predefined

@ In CNN filter is learned from the data

Jakramate Bootkrajang CS456: Machine Learning

Sobel edge detection kernel

1| 0 1 -1 -2 | -1

2| 0 2 0|0 0

1| 0 1 -1 (-2 -1
Horizontal Vertical

Kernels used in the Sobel edge detection

Jakramate Bootkrajang CS456: Machine Learning

CNN kernels learned from ImageNet

Figure: Krizhevsky et al. “ImageNet Classification with Deep Convolutional
Neural Networks”

Jakramate Bootkrajang CS456: Machine Learning

How the output is calculated 7 (1/2)

Cross correlation operation (widely used despite the name)

Compute the sum of element-wise products

Input
Kernel «
a 3 e d Q
S w z NN
e f g h =
v z Kemel
i i k !
\ 2 Output
aw + bz + bw 4+ ex + ow + dz o+
ey + fz fv + gz 9y + hz
ew + fzr + fw o+ gz + qw + +
Wy o+ gz v+ kz ky + 1z

Jakramate Bootkrajang CS456: Machine Learning

How the output is calculated ? (2/2)

Convolution operation (flipping kernel from right to left and from top to

buttom and perform cross-correlation)

Jakramate Bootkrajang CS456: Machine Learning

Convolutional layer in CNN

32x32x3 image

/ 5x5x3 filter

32 £
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

w|

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

o Flat filter can be seen as a matrix. However, filter can have depth
resulting in mathematical object called tensor

Jakramate Bootkrajang CS456: Machine Learning 59 /86

Convolutional layer in CNN

Filters always extend the full
depth of the input volume

32x32x3 image

/ 5x5x3 filter

32 £’
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

w |

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Jakramate Bootkrajang CS456: Machine Learning

Convolutional layer in CNN

__— 32x32x3 image

/ 5x5x3 filter w
32

" 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wle +b

32

|

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Jakramate Bootkrajang CS456: Machine Learning

Convolutional layer in CNN

activation map

//
[

32

——0

32

w |

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

28

28

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Jakramate Bootkrajang

CS456: Machine Learning

Convolutional layer in CNN

activation maps

__— 32x32x3 image

32

w |

Jakramate Bootkrajang

Ve
[[==o

5x5x3 filter

convolve (slide) over all
spatial locations

consider a second, green filter

/

4

28

28

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

CS456: Machine Learning

63/86

Convolutional layer in CNN

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

4

32

3

32

Convolution Layer

activation maps

y

6

28

We stack these up to get a “new image” of size 28x28x6!

Jakramate Bootkrajang

28

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

CS456: Machine Learning

64 /86

Stride

The number of row and column to skip when sliding the kernel

(a) Stride =1
‘r|2)3]|1|3]s
12025425] " S14 -1 [10| -l
tol6lol6l2]2 NIEERE
¥l1jof-1] =
12101119410 T |-10] 1 |13
Stride= 1 1]0f-1
5/5(/4(6|7]|6 5 (-16] 4|10
6137|115
(b) Stride = 2
Ne(BNBE
t202|s5]4(2]5 ; |
50 619|622 -14| 10
* 11 -1 =
Sl2lof1]9]4]o0 ; 1 71
Swide=2l s | s14l6|7]6
6113|7115

dled Qge ne
Jakramate Bootkrajang CS456: Machine Learning

Padding

Input augmentation so that kernel output can be computed

Input Kernel Output

fespesspesspeosapans

t0:0,0:01:0:

ek i 03|84
‘olof1]|2)0:

¥ —— 011 9 119]125(10
103|450 * =

g 2|3 21|37|43|16
06| 7|8)0!

}] 6|7]18|0
030450350 '

e
'

pam
"o

Jakramate Bootkrajang CS456: Machine Learning

Pooling layer

@ Perform compression on input using window of size p.

@ Making the representation invariant to small translation

max pooling

20| 30

112 37
12|20| 30| O
8 |12 2
34|70 37| 4 average pooling
112/100| 25| 12 13| 8

79| 20

CS456: Machine Learning

Jakramate Bootkrajang

Fully-connected layer

@ The final output from convolutional layer can be seen as feature

vector
@ The features can be fed into fully-connected NN for classification

@ Some researchers have successfully used the features to train other
classifiers (SVM, LR)

Jakramate Bootkrajang CS456: Machine Learning 68 /86

Transfer learning

Many of the recognition tasks share important low-level features

@ Trained convolutional layer of existing network can be used as it is

(freezing the weights)

Only train the fully-connected NN to match our current task

e Note: tasks similarity dictates the success of transfer learning (but

how to measure ?)

Jakramate Bootkrajang CS456: Machine Learning 69 /86

Case study: Alexnet

13 13 13
g, JUN N 3&5‘\»3’ -
r - 3 — 4 dense’| |dens

- - T-%s - 13 % |3

3 3 =

384 384 256 100
Max
256 o 4

Max Max pooling 36 4096
pooling pooling

@ Max-pooling layers follow first, second, and fifth convolutional layers

@ The number of neurons in each layer is given by 253440, 186624,
64896, 64896, 43264, 4096, 4096, 1000

Jakramate Bootkrajang CS456: Machine Learning

Recurrent Neural Network

Jakramate Bootkrajang CS456: Machine Learning

Motivation

@ In some situations, input instances are not completely independent

with some temporal dependencies.

@ Examples

> text generation: "l was born in France, | fluently speak ..."

> weather forecast: tomorrow’s weather may depend on todays' and
yesterday's

@ CNN or NN cannot model such temporal dependencies

Jakramate Bootkrajang CS456: Machine Learning

Recurrent Neural Network (RNN)

An RNN is neural network where the outputs of the node can flow back
into the node at the next time step

Unfold I I I

<j- [::> —» ht1 [ht]—V»[ht+1]—V>
@ ® ®

Figure: (left) typical RNN diagram, (right) diagram unfolded through time

Jakramate Bootkrajang CS456: Machine Learning 73 /86

Issue with RNN

@ RNN works well but sometimes out of context information persists in

the memory for too long

R SR S i ¢
(A A=A F——[A > A [A]

® & 0 o o

@ Here, xp, xy still have some influences on output hyig

® ® ()

e

[| |
© ® ©

Jakramate Bootkrajang CS456: Machine Learning 74 /86

Long Short Term Memory (LSTM)

@ LSTM tries to solve this problem with forgetting mechanism

® ® ()
t t

:
: |

A EL* A

® ® ©

v

v

@ Based heavily on https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

Jakramate Bootkrajang CS456: Machine Learning

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Investigating LSTM components

e Memory lane (cell state)
@ Forgetting gate layer

@ Input gate layer

@ output layer

Jakramate Bootkrajang CS456: Machine Learning

Memory lane

@ It runs throught the whole chain
@ Information can be removed (via X mark)
@ or added to memory (via + mark)

@ C; sometimes called cell state

Jakramate Bootkrajang CS456: Machine Learning 77/86

Forgetting gate layer

i fi=o0(Wp-[hy_1, 2] + by)

@ f; is between 0 and 1
o f; = 0 indicates that C;_; should be wiped out

o f; =1 retains fully the state C;_1

Jakramate Bootkrajang CS456: Machine Learning

Input gate layer

iv =0 (Wi-[hi—1, 2] + b;)
C; = tanh(We - [he—1, 2] + be)

@ i; tells which component of C; to update

o C; computes the update values

Jakramate Bootkrajang CS456: Machine Learning

Input gate layer

Ciy Cy

=
B
v

f’T i &) Ct:fr*cn—1+‘if.*és

@ the new cell state equals the sum of old memories with new memories

Jakramate Bootkrajang CS456: Machine Learning

Output layer

— Oﬁ:J(VVn [hf.—laxi,] + bo)
hy = oy * tanh (Cy)

J T iy

B

@ OQutput layer produces prediction as well as sends info back into the

node in the next time step

Jakramate Bootkrajang CS456: Machine Learning

Python code for LSTM

def LSTMCELL(prev_ct, prev_ht, input):

combine = prev_ht + input
ft = forget_layer(combine)
candidate = candidate_layer(combine)
it = dnput_layer(combine)
Ct = prev_ct * ft + candidate * it
ot = output_layer(combine)
ht = ot * tanh(Ct)
ht, Ct

ct = [0, 0, 0]
ht = [0, 6, 6]

for dinput in inputs:
ct, ht = LSTMCELL(ct, ht, input)

Figure: https://towardsdatascience.com/

illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44
CS456: Machine Learning 82 /86

Jakramate Bootkrajang

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Applications of LSTM

one to many many to one many to many many to many

o t S8 A} g6 e il

t ﬁ ﬁ t ﬁ ﬁ it o A
Image Captioning Video Activity Recog Video Captioning POS Tagging

Text Classification Machine Translation ~ Language Modeling

Figure: by Raymond J. Mooney

Jakramate Bootkrajang CS456: Machine Learning

Wait! How to train LSTM ?

backpropagation

TR Rl T | .
i 5] M Fpm/wp TV‘ W%W
dors e g M4 o | 2 =9

,‘(lu» el ,

(
ot) .
L 2. (er uN“

F IgU F€. https://www.kdnuggets.com/2019/05/understanding-backpropagation-applied-1stm.html

Jakramate Bootkrajang CS456: Machine Learning 84 /86

https://www.kdnuggets.com/2019/05/understanding-backpropagation-applied-lstm.html

Objectives: revisited

@ To understand the philosophy behind neural networks classifier

To understand how to train neural network models

To understand the effect of important neural networks parameters

To understand what deep neural networks are
» CNN

» LSTM

Jakramate Bootkrajang CS456: Machine Learning 85/86

Reading list

@ https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/
st-m-hdstat-rnn-deep-learning.pdf

@ https://project.inria.fr/deeplearning/files/2016/05/
session3d.pdf

@ https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

Jakramate Bootkrajang CS456: Machine Learning 86 /86

https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-m-hdstat-rnn-deep-learning.pdf
https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-m-hdstat-rnn-deep-learning.pdf
https://project.inria.fr/deeplearning/files/2016/05/session3.pdf
https://project.inria.fr/deeplearning/files/2016/05/session3.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

	Artificial Neural Networks
	Backpropagation
	Convolutional Neural Network
	Recurrent Neural Network

