
Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition,

Chapter 5: Process
Scheduling

By Worawut Srisukkham Updated By Dr. Varin Chouvatut

5.2 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Chapter 5: Process Scheduling

 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Thread Scheduling
 Multiple-Processor Scheduling
 Operating System Examples
 Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Objectives

 To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems

 To describe various CPU-scheduling algorithms
 To discuss evaluation criteria for selecting a CPU-scheduling algorithm

for a particular system

5.4 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Basic Concepts

 Maximum CPU utilization is obtained with multiprogramming
 CPU-I/O Burst Cycle – Process execution consists of a cycle of

CPU execution and I/O wait. Processes alternate between these 2
states.

 CPU-burst distribution

5.5 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Alternating Sequence of CPU and I/O Bursts

5.7 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

CPU Scheduler

 Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready state
4. Terminates

 Scheduling schemes under circumstances 1 and 4 are nonpreemptive
 All other schemes are preemptive

nonpreemptive: ไม่สามารถแทรกการทาํงานกลางคนัขณะท่ี CPU กาํลงัประมวลผลโปรเซส

preemptive: แทรกการทาํงานกลางคนัขณะท่ี CPU กาํลงัประมวลผลโปรเซส

5.8 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler (or the CPU scheduler);
this function involves:
 Switching context
 Switching to user mode
 Jumping to the proper location in the user program to restart

that program
 Dispatch latency – the time it takes for the dispatcher to stop one

process and start another running

Dispatcher: ตวัส่งข่าวสารไปยงั state อ่ืน , ตวัส่งต่อ

5.9 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible
 Throughput – the number of processes that are completed per

time unit
 Turnaround time – amount of time to execute a particular process
 Waiting time – amount of time a process has been waiting in the

ready queue
 Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-
sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Scheduling Algorithm: Optimization Criteria
 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

There are many different CPU-scheduling algorithms:
1. First-Come, First-Served Scheduling
2. Shortest-Job-First Scheduling
3. Priority Scheduling
4. Round-Robin Scheduling
5. Multilevel Queue Scheduling
6. Multilevel Feedback Queue Scheduling

5.11 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time (ms)
P1 24
P2 3
P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17
 Turnaround time : P1 = 24; P2 = 27; P3 = 30

P1 P2 P3

24 27 300

5.12 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Turnaround time : P1 = 30; P2 = 3; P3 = 6
 Much better than previous case
 A Convoy effect – short processes stand behind a long process

P1P3P2

63 300

5.13 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time first

 Two schemes:
 nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.
 preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preempt. This scheme is
know as the Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average waiting time for a given set of
processes
 The difficulty is knowing the length of the next CPU request

arrive : มาถึง

5.14 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Example of SJF

Process Arrival Time Burst Time
P1 .0 6
P2 8
P3 7
P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
 Turnaround Time :

P4 P3P1

3 160 9

P2

24

หมายเหตุ ทุก Process มาถงึเวลาเดียวกนั

P1 P2 P3 P4

P1= 9; P2 = 24; P3 =16; P4= 3;

5.15 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Example of nonpreemptive SJF
Process Arrival Time Burst Time

P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

 SJF scheduling chart : แบบ nonpreemptive ไม่สามารถแทรกการทาํงานกลางคนัได้

 Average waiting time = (0 + 14 + 5 + 1) / 4 = 20/4 = 5 ms
P1 P2 P3 P4

* คิด Arrival time ดว้ย
0-0 16-2 9-4

6-5

P1 P3P4

0 96

P2

16 24

หมายเหตุ เวลามาถงึของแต่ละ Process ไม่เท่ากนั

5.16 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Example of preemptive SJF
Process Arrival Time Burst Time

P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 1.0 3

 SJF scheduling chart : แบบ preemptive แทรกการทาํงานกลางคนัได้

 Average waiting time = (3 + 14 + 5 + 0) / 4 = 22/4 = 5.5 ms

P1 P3

0 169

P2

P1 P2 P3 P4

** Process มาถึงเวลาไม่เท่ากนั

4-1 16-2 9-4
1-1 * คิด Arrival time ดว้ย

241

P4

4

P1

5.17 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Determining Length of Next CPU Burst
เน่ืองจากว่า SJF เหมาะกบัการจดั Schedule แบบ Long-Term Scheduling จะไม่สามารถ

นํามาใช้กบั Short-Term Scheduling เพราะไม่สามารถที่จะรู้ช่วงเวลาถดัไปที่ CPU Burst
จงึเกดิวธีิการต่อไปนีข้ึน้

 Can only estimate the length
 Can be done by using the length of previous CPU bursts, using exponential

averaging

1. 𝑡𝑡𝑛𝑛 = actual length of 𝑛𝑛𝑡𝑡ℎ CPU burst

2. 𝜏𝜏𝑛𝑛+1 = predicted value for the next CPU burst

3. 𝛼𝛼, 0 ≤ 𝛼𝛼 ≤ 1
4. Define 𝜏𝜏𝑛𝑛+1 = 𝛼𝛼𝑡𝑡𝑛𝑛 + 1 − 𝛼𝛼 𝜏𝜏𝑛𝑛

α is constant or as an overall system average

5.18 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Prediction of the Length of the Next CPU Burst

𝛼𝛼 = ⁄1 2 and 𝜏𝜏0 = 10

5.19 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Examples of Exponential Averaging

 α =0
 τn+1 = τn

 Recent history does not count
 α =1

 τn+1 = tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn-1 + …

+(1 - α)j α tn -j + …
+(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each successive term
has less weight than its predecessor

Recent : ผา่นมาเร็วๆ น้ี, พึ่งผา่นมา

Predecessor: บรรพบุรุษ, ตวัท่ีทาํมาก่อน

5.20 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Priority Scheduling

 A priority number (integer) is associated with each process
 The CPU is allocated to the process with the highest priority

(smallest integer ≡ highest priority)
 Preemptive
 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst
time

 Problem ≡ Starvation – low priority processes may never be executed
 Solution ≡ Aging – as time progresses, increase the priority of the process

5.21 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Example of Priority Scheduling

Process Burst Time Priority
P1 6 3
P2 8 1
P3 7 4
P4 3 2
P5 9 5

 priority scheduling chart

 Average waiting time = (11 + 0 + 17 + 8+ 24) / 5 = 12 ms
 Turnaround Time :

P2 P1P4

0 8

P3

P1 P2 P3 P4 P5

P1= 17; P2 = 8; P3 =24; P4= 11; P5= 33;

11 24

P5

17 33

หมายเหตุ ทุก Process มาถงึเวลาเดียวกนั

5.22 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Round-Robin (RR) Scheduling

 Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units. No processes wait longer than
𝑛𝑛 − 1 × 𝑞𝑞 time units.

 Performance
 q large ⇒ FCFS
 q small ⇒ q must be large with respect to the context-switch

time, otherwise overhead is too high

time quantum: ส่วนแบ่งเวลา

5.23 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 03

 The Gantt chart is:

 average waiting time: (6 + 4 + 7) /3 = 5.67 ms

 Turnaround time : P1= 30 ; P2 = 7 ; P3= 10 ;
 Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

10-4 4 7

P1 P2 P3

หมายเหตุ ทุก Process มาถงึเวลาเดียวกนั

5.24 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Time Quantum and Context-Switch Time

Showing how a smaller time quantum increases context switches

5.25 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Turnaround Time Varies with the Time Quantum

Turnaround time also
depends on the size
of the quantum time

5.26 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues
 Commonly implemented as fixed-priority preemptive scheduling; (i.e.,

serve all from foreground then from background). Possibility of
starvation.

 Time slice – each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

 and 20% to background in FCFS

5.27 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

An example of a multilevel queue scheduling algorithm with 5
queues, listed in order of priority.

5.28 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multilevel Feedback Queue Scheduling

 A process can move between various queues; aging can be
implemented this way to prevent starvation.

 Multilevel-feedback-queue scheduler is generally defined by the
following parameters:
 the number of queues
 the scheduling algorithm for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enter

when that process needs service

aging : เพิ่มศกัด์ิข้ึน

demote: ลดศกัด์ิลง

5.29 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue
 Three queues:

 Q0 – RR with time quantum of 8 milliseconds
 Q1 – RR with time quantum of 16 milliseconds
 Q2 – FCFS

 Scheduling
 A new job enters queue Q0. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to the
tail of queue Q1.

 Only when queue Q0 is empty will the scheduler execute processes in
queue Q1. At Q1 job receives 16 additional milliseconds. If it still does
not complete, it is preempted and moved to queue Q2.

 Processes in queue Q2 are run on an FCFS basis but are run only when
queues Q0 and Q1 are empty.

5.30 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multilevel Feedback Queues

Q0

Q1

Q2

Queue ถดัมาไม่สามารถเร่ิมทาํงานได ้หาก Queue ก่อนหนา้ทาํงานไม่เสร็จ หรือ ยงั

ไม่ empty หรือ ยงัไม่หมดช่วงเวลาท่ีกาํหนดให ้(time quantum)

5.31 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads
 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP
 Known as process-contention scope (PCS) since scheduling

competition is within the same process

 Kernel thread scheduled onto available CPU is system-contention
scope (SCS) – competition among all threads in system

 System using one-to-one models such as Windows XP, Solaris, and
Linux schedule thread using only SCS

5.32 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Pthread Scheduling

 In thread creation with Pthreads, the POSIX Pthread API allows
specifying either PCS or SCS during thread creation.

 Pthreads identifies the following contention scope values:
 PTHREAD_SCOPE_PROCESS schedules threads using PCS

scheduling
 PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling.

PCS: process-contention scope
SCS: system-contention scope

5.33 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM_THREADS];
pthread_attr_t attr;

/* get the default attributes */
pthread_attr_init(&attr);

/* set the scheduling algorithm to PROCESS (PCS) or SYSTEM (SCS)*/
pthread_attr_setscope(&attr, PTHREAD_SCOPE _SYSTEM);

/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], &attr, runner, NULL);

5.34 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);
} /* end main */

/* Each thread will begin control in this function */
void *runner(void *param)
{

printf("I am a thread\n");
pthread_exit(0);

}

5.35 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multiple-Processor Scheduling
 CPU scheduling is more complex when multiple CPUs are available
 Homogeneous processors within a multiprocessor
 Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing
 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has its own
private queue of ready processes

 Processor affinity – a process has an affinity for the processor on which
it is currently running
 soft affinity : process may migrate between processors
 hard affinity : process must not migrate to other processors

Homogeneous : แบบเดียวกนั เช่น cpu เป็น Intel เหมือนกนั

Heterogeneous : หลายแบบ เช่น cpu เป็น Intel, AMD, ultra spark , power Mac
Alleviating : แบ่งเบาภาระ

migrate : ยา้ยการทาํงาน

affinity: เก่ียวพนักนั

5.36 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

NUMA and CPU Scheduling
NUMA : Non-Uniform Memory Access

สถาปัตยกรรมท่ีมีการใช ้NUMA จะทาํให ้

A CPU has faster access to some parts of main memory than
to other parts.

5.37 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multicore Processors

 Recent trend is to place multiple processor cores on the same physical chip
 SMP systems that use Multicore processors are Faster and consume Less

power than systems in which each processor has its own physical chip
 Multiple threads per core are also growing

 Takes advantage of memory stall to make progress on another thread
while memory retrieval happens

SMP : Symmetric Multiprocessing

5.38 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Memory Stall

memory stall cycle : ช่วงเวลาท่ี cpu ตอ้งรอการนาํขอ้มูลท่ีไม่ไดอ้ยูใ่นหน่วยความจาํใหถู้กload มาไวใ้น

หน่วยความจาํ เช่น a cache miss (ขอ้มูลท่ีตอ้งการเขา้ถึง ไม่ไดอ้ยูใ่น cache memory)

5.39 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Multithreaded Multicore System

1

0

Multithreaded processor cores in which 2 (or more) heardware
threads are assigned to each core.
Thus, if one thread stalls while waiting for memory, the core can
switch to another thread.

5.40 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Operating System Examples

 Solaris scheduling
 Windows XP scheduling
 Linux scheduling

5.41 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Solaris Dispatch Table

5.42 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Solaris Scheduling

5.43 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Windows XP Priorities

5.44 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Linux Scheduling

 Constant order O(1) scheduling time
 Two priority ranges: time-sharing (or multitasking) and real-time
 Real-time range from 0 to 99 and nice value from 100 to 140
 See example picture on next slide

5.45 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Priorities and Time-slice length

5.46 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

List of Tasks Indexed According to Priorities

active array: เกบ็ task ท่ีทาํงานอยู่

expired array:เกบ็ task ท่ีหมดเวลา

5.47 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined workload and
defines the performance of each algorithm for that workload.

Ex. Define all processes running in FCFS, SJF, RR and then find out
the result of minimum waiting time.

 Queueing models – what can be determined is the distribution of CPU
and I/O bursts. Knowing arrival rate and service rates, we can compute
utilization, average queue length, average wait time, and so on.

 Implementation – the only completely accurate way to evaluate a
scheduling algorithm is to code it up, put it in the OS, and see how it
works.

5.48 Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition

Evaluation of CPU schedulers by Simulation

Silberschatz, Galvin and Gagne ©2010Operating System Concepts – 8th Edition,

End of Chapter 5

	Chapter 5: Process Scheduling �By Worawut Srisukkham		Updated By Dr. Varin Chouvatut
	Chapter 5: Process Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times
	Alternating Sequence of CPU and I/O Bursts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm: Optimization Criteria
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Example of nonpreemptive SJF
	Example of preemptive SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Example of Priority Scheduling
	Round-Robin (RR) Scheduling
	Example of RR with Time Quantum = 4
	Time Quantum and Context-Switch Time
	Turnaround Time Varies with the Time Quantum
	Multilevel Queue Scheduling
	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling API
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multicore Processors
	Memory Stall
	Multithreaded Multicore System
	Operating System Examples
	Solaris Dispatch Table
	Solaris Scheduling
	Windows XP Priorities
	Linux Scheduling
	Priorities and Time-slice length
	List of Tasks Indexed According to Priorities
	Algorithm Evaluation
	Evaluation of CPU schedulers by Simulation
	End of Chapter 5

