Chapter 5. Process
Scheduling

By Worawut Srisukkham Updated By Dr. Varin Chouvatut

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2010

'TQ\

p_—

u.—/ Chapter 5: Process Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Operating System Examples

Algorithm Evaluation

'“-')"l'l:';

S i T |
| \1

“l A%

Operating System Concepts — 8" Edition 5.2 Silberschatz, Galvin and Gagne ©2010

&fv,, Objectives

B To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system

Silberschatz, Galvin and Gagne ©2010

Operating System Concepts — 8t Edition 5.3

< Basic Concepts

Maximum CPU utilization is obtained with multiprogramming

CPU-1/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/O wait. Processes alternate between these 2

states.
m CPU-burst distribution

Operating System Concepts — 8t Edition 5.4 Silberschatz, Galvin and Gagne ©2010

/%

“$¥7 Histogram of CPU-burst Times

L

A

160

140 \
120

=15

o

Q
=

frequency
(0.0
o
=l

40 \
20 \

0 8 16 24 32 40
burst duration (milliseconds)

A

Operating System Concepts — 8" Edition 5.5 Silberschatz, Galvin and Gagne ©2010

—
-

)” Alternating Sequence of CPU and I/O Bursts

Operating System Concepts — 8" Edition

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

5.6

> CPU burst

- 1/O burst

CPU burst

N A,

j I/O burst

* CPU burst

> 1/O burst

‘f"'-l iil
Silberschatz, Galvin and Gagne ©2010

> o CPU Scheduler

B Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

m CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready state

4. Terminates
m Scheduling schemes under circumstances 1 and 4 are nonpreemptive
m All other schemes are preemptive

nonpreemptive: Licunsaunsnmsramnansuvasi CPU tdsssurana Tusisa
preemptive: unsamsaunandusazi CPU fdawlsyuanalusiya

. - ‘_. A _'_.::_‘
___,/’/:y-‘s‘-":— _.\‘\l
o h“%—(

Al <

Operating System Concepts — 8! Edition 5.7 Silberschatz, Galvin and Gagne ©2010

A
r;‘rd

,thj

557 Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler (or the CPU scheduler);
this function involves:

e Switching context
e Switching to user mode

e Jumping to the proper location in the user program to restart
that program

m Dispatch latency — the time it takes for the dispatcher to stop one
process and start another running

Dispatcher: fdwinms'llés state ou, ddsde

Silberschatz, Galvin and Gagne ©2010

Operating System Concepts — 8t Edition 5.8

A
r;‘rd

,thj

,,.- Scheduling Criteria

m CPU utilization — keep the CPU as busy as possible

®m Throughput — the number of processes that are completed per
time unit

B Turnaround time — amount of time to execute a particular process

m Waiting time — amount of time a process has been waiting in the
ready queue

m Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

Operating System Concepts — 8! Edition 5.9 Silberschatz, Galvin and Gagne ©2010

=

P

S *"”Schedullng Algorithm: Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

There are many different CPU-scheduling algorithms:
First-Come, First-Served Scheduling
Shortest-Job-First Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue Scheduling

S o

Multilevel Feedback Queue Scheduling

Operating System Concepts — 8t Edition 5.10 Silberschatz, Galvin and Gagne ©2010

=
S

“$7First-Come, First-Served (FCFS) Scheduling

Process Burst Time (ms)

P, 24
P, 3

®m Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

Py P, P

0 24 27 30

m Waiting time for P, =0; P, =24, P;=27
m Average waiting time: (0 +24 + 27)/3 =17
® Turnaroundtime: P, =24;P, =27;P;=30

Operating System Concepts — 8! Edition 5.11 Silberschatz, Galvin and Gagne ©2010

'M

P

@ ¥ FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P2] P3] Pl
B The Gantt chart for the schedule is:

P, P P,

0 3 6 30
Waiting time for P, =6;P,=0.P;=3
Average waiting time: (6+ 0+ 3)/3=3
Turnaround time : P, =30; P, =3;P;=6
Much better than previous case

A Convoy effect — short processes stand behind a long process

Operating System Concepts — 8! Edition 5.12 Silberschatz, Galvin and Gagne ©2010

“#”’Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time first

B Two schemes:

e nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst.

e preemptive — if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the Shortest-Remaining-Time-First (SRTF).

m SJF is optimal — gives minimum average waiting time for a given set of
processes

e The difficulty is knowing the length of the next CPU request

arrive : o

Operating System Concepts — 8! Edition 5.13 Silberschatz, Galvin and Gagne ©2010

|)
(PN '
) Example of SJF
Process Burst Time
P, 6
P, 8
P, 2
P, 3

m SJF scheduling chart

P, P, Ps P,

0 3 9 16 24
Pl I:)2 P3 I:)4
®m Average waiting time=(3+16+9+0)/4=7
® Turnaround Time: P,=9; P, =24; P, =16; P,= 3;

A -"'\l-u._‘
P SR
“d DA o

Operating System Concepts — 8" Edition 5.14 Silberschatz, Galvin and Gagne ©2010

"‘M

)

S #7/ Example of nonpreemptive SJF

Process Arrival Time Burst Time
= 0.0 6
P, 2.0 8
P, 4.0 7
P, 5.0 3

m SJF scheduling chart : oy nonpreemptive liaunsounsnmshaunaisaula

Py P, P, P,
0 6 9 16 24
P I:)2 3 4
® Average waiting time/(vo +14+5+ 11/\4 20/4 =5 ms
6-5 * aa Arrival time aae
0-0 16—2 - P

£ A9

Operating System Concepts — 8t Edition 5.15 Silberschatz, Galvin and Gagne ©2010

"‘M

.
s %77 Example of preemptive SJF
Process Arrival Time Burst Time
= 0.0 6
P, 2.0 8
P, 4.0 7
P, 1.0 3

** Process wdaan limiu

m SJF scheduling chart : wuu preemptive unsnmsyaunardnld

Py Ps | Py P, P,

0 1 4 9 16 24
P, P, P; P,
m Average waitingtime=(3+14+5+0)/4=22/4= 55 ms

S N NI * 7 Arrival time

4-1| |16-2||9-4 il e

o< 29% =

Operating System Concepts — 8! Edition 5.16 Silberschatz, Galvin and Gagne ©2010

_m.i

L’ Determlnlng Length of Next CPU Burst

iiiesand SIF manzdumssa Schedule wuLong-Term Scheduling axliannse
wnlsno Short-Term Scheduling mswhimansafiez3samaalin CPU Burst

ufadIsMIne 1UHIY
m Can only estimate the length

m Can be done by using the length of previous CPU bursts, using exponential
averaging

1. t, = actual length of nt" CPU burst

2. Tn41 = predicted value for the next CPU burst
3 a,0<a<1

4. Define T4 = at, + (1 — @)1,

(Ol is constant or as an overall system average

/"»ﬁ -\1

Operating System Concepts — 8! Edition 5.17 Silberschatz, Galvin and Gagne ©2010

"‘?ﬂfpredlctlon of the Length of the Next CPU Burst

12 e
7 10 e
’ o

5 Vi
6 //

_—/
4
2

CPU burst () 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

a=1/2and 7y =10

A “
Operating System Concepts — 8t Edition 5.18 Silberschatz, Galvin and Gagne ©2010

=

&ﬁf},—gEXamples of Exponential Averaging

m a=0
® Tha1 = Ty
e Recent history does not count
m o=1
* T =1
e Only the actual last CPU burst counts
m If we expand the formula, we get:
Tp—-oat+2-a)at, , + ...
+H(l-a)Yot, j+..
+(1- o)1

® Since both a and (1 - o) are less than or equal to 1, each successive term
has less weight than its predecessor

Recent : wuinisa fj, Naruan
Predecessor: ussnygy, dmnviunnou

Operating System Concepts — 8! Edition 5.19 Silberschatz, Galvin and Gagne ©2010

'M

P

&f*,—/ Priority Scheduling

m A priority number (integer) is associated with each process
m The CPU is allocated to the process with the highest priority

(smallest integer = highest priority)
e Preemptive
® nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU burst
time

m Problem = Starvation — low priority processes may never be executed
B Solution = Aging — as time progresses, increase the priority of the process

Operating System Concepts — 8! Edition 5.20 Silberschatz, Galvin and Gagne ©2010

'M

.

S #77 Example of Priority Scheduling

Process Burst Time Priority
P, 6 3
P, 8 1
P, 7 4
P, 3 2
P 9 5

®m priority scheduling chart

P, P, P, P, Ps

0 8 11 17 24 33
Pl I:)2 P3 I:)4 P5

m Average waiting time=(11+0+17+8+24)/5= 12 ms
B Turnaround Time : P,=17; P,=8; P,=24; P,= 11; P.= 33;

Operating System Concepts — 8t Edition 5.21 Silberschatz, Galvin and Gagne ©2010

=

-
- W"‘j

&.,.-z Round-Robin (RR) Scheduling

m Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

m If there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units. No processes wait longer than
(n — 1) X g time units.

®m Performance
e (large = FCFS

e ¢ small = q must be large with respect to the context-switch
time, otherwise overhead is too high

time quantum: aauuianan

. - ‘_. A _'__::_‘
___,/’/:y-‘s‘-":— _.\‘\l
o h“%—(

A9

Operating System Concepts — 8t Edition 5.22 Silberschatz, Galvin and Gagne ©2010

=
S

“37/Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
P, 3

®m The Gantt chart is: e o o o e e I

Py | Py | P3| Pp | P | Py | Py Py

0 10 14 18 22 26 30
Py

® average waiting tlryﬁ + 4 +7)/3— 5.67 ms

/\

10-4 4
® Turnaround time: Pl= 30 ,P2=7 ;P3=10 ;
m Typically, higher average turnaround than SJF, but better respon

Operating System Concepts — 8! Edition 5.23 Silberschatz, Galvin and Gagne ©2010

“%7/ Time Quantum and Context-Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
1 9

o 1. 2 3 4 5 6 7 8 9 10

Showing how a smaller time quantum increases context switches

Silberschatz, Galvin and Gagne ©2010

Operating System Concepts — 8t Edition 5.24

,y

‘f"g},ﬂ rnaround Time Varies with the Time Quantum

L\

Turnaround time also process | time
depends on the size 12.5 P, 6
of the quantum time 50 A P, 3
\ P, 1
£ 115 P, 7
E 11 OA \
3 ¥ \
£ 105 >
=
® 10.0
o
> 95
9.0

1 2 3 4 5 6 7
time quantum

Operating System Concepts — 8t Edition 5.25 Silberschatz, Galvin and Gagne ©2010

=

‘14'_:,

= -ua-.vpnj

“$7” Multilevel Queue Scheduling

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

m Each queue has its own scheduling algorithm
e foreground — RR
e background — FCFS

® Scheduling must be done between the queues

e Commonly implemented as fixed-priority preemptive scheduling; (i.e.,
serve all from foreground then from background). Possibility of
starvation.

e Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

e and 20% to background in FCFS

. - ‘_. A _'_.::_‘
___,/’/:y-‘s‘-":— _.\‘\l
o h“%—(

A9

Operating System Concepts — 8! Edition 5.26 Silberschatz, Galvin and Gagne ©2010

“$¥/ Multilevel Queue Scheduling

highest priority

| interactive processes fr—
——p interactive editing processes -
— batch processes E—
m— student processes —

lowest priority

An example of a multilevel queue scheduling algorithm with 5
queues, listed in order of priority.

A -
Operating System Concepts — 8t Edition 5.27 Silberschatz, Galvin and Gagne ©2010

_!..A

.

*Multllevel Feedback Queue Scheduling

B A process can move between various queues; aging can be
implemented this way to prevent starvation.

m Multilevel-feedback-queue scheduler is generally defined by the
following parameters:

e the number of queues

e the scheduling algorithm for each queue

e method used to determine when to upgrade a process
e method used to determine when to demote a process

e method used to determine which queue a process will enter
when that process needs service

aging : situdnay
demote AAANARY

Da

Operating System Concepts — 8" Edition 5.28 Silberschatz, Galvin and Gagne ©2010

=

o

»"Example of Multilevel Feedback Queue

® Three queues:

e Qy— RR with time quantum of 8 milliseconds
e Q; — RR with time quantum of 16 milliseconds
e Q,—FCFS

m Scheduling

e A new job enters queue Q,. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to the
tail of queue Q;.

e Only when queue Q, is empty will the scheduler execute processes in
queue Q;. At Q, job receives 16 additional milliseconds. If it still does
not complete, it is preempted and moved to queue Q..

e Processes in queue Q, are run on an FCFS basis but are run only when
queues Q, and Q, are empty.

: - ‘_. A _'_.::_‘
___,/’/:y-‘s‘-":— _.\‘\l
o h“%—(

“ <

Operating System Concepts — 8! Edition 5.29 Silberschatz, Galvin and Gagne ©2010

'TQ\

p_—

W"’ Multilevel Feedback Queues

.— P>
Qo >| quantum = 8 |

)
Q4 $quantum =16 '

' 3
Q, —»f FCFS |

Queue damnlimmsasuhauld mn Queue deunthrhan Ly e 69
lii empty wie filinuarranansmuald (time quantum)

Operating System Concepts — 8! Edition 5.30 Silberschatz, Galvin and Gagne ©2010

- Thread Scheduling

Distinction between user-level and kernel-level threads

Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP

e Known as process-contention scope (PCS) since scheduling
competition is within the same process

m Kernel thread scheduled onto available CPU is system-contention
scope (SCS) — competition among all threads in system

B System using one-to-one models such as Windows XP, Solaris, and
Linux schedule thread using only SCS

£, .v. A
o “{,—f

v

Operating System Concepts — 8t Edition 5.31 Silberschatz, Galvin and Gagne ©2010

A
r;‘rd

,thj

S Pthread Scheduling

® In thread creation with Pthreads, the POSIX Pthread API allows
specifying either PCS or SCS during thread creation.

m Pthreads identifies the following contention scope values:

e PTHREAD_SCOPE_PROCESS schedules threads using PCS
scheduling

e PTHREAD_ SCOPE_SYSTEM schedules threads using SCS
scheduling.

PCS: process-contention scope
SCS: system-contention scope

7R
A9
Operating System Concepts — 8! Edition 5.32 Silberschatz, Galvin and Gagne ©2010

o Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv([])
{
inti;
pthread t tid[INUM_THREADS];
pthread_attr t attr;
[* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS (PCS) or SYSTEM (SCS)*/
pthread_attr_setscope(&attr, PTHREAD SCOPE SYSTEM);
[* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr _setschedpolicy(&attr, SCHED OTHER);

[* create the threads */
for (i=0; i < NUM_THREADS; i++)
pthread_create(&tid[i], &attr, runner, NULL);

a -"'\l-u._‘
P
4 295

Operating System Concepts — 8! Edition 5.33 Silberschatz, Galvin and Gagne ©2010

?

w o Pthread Scheduling AP

[* now join on each thread */
for (i=0;i < NUM_THREADS; i++)
pthread_join(tid[i], NULL);
}/*end main */

[* Each thread will begin control in this function */
void *runner(void *param)
{
printf("l am a thread\n");
pthread_exit(0);

“

Operating System Concepts — 8t Edition 5.34 Silberschatz, Galvin and Gagne ©2010

g,
B
- ﬂ“‘*hl

“3$7/ Multiple-Processor Scheduling

m CPU scheduling is more complex when multiple CPUs are available
Homogeneous processors within a multiprocessor

Asymmetric multiprocessing — only one processor accesses the
system data structures, alleviating the need for data sharing

B Symmetric multiprocessing (SMP) — each processor is self-
scheduling, all processes in common ready queue, or each has its own
private queue of ready processes

m Processor affinity — a process has an affinity for the processor on which
it is currently running

e soft affinity : process may migrate between processors
e hard affinity : process must not migrate to other processors

Homogeneous : wuu@eaiu wu CPU 1iu Intel milour

Heterogeneous : waeuuy wsu CpU lu Intel, AMD, ultra spark , power Mac
Alleviating : uiaunse

migrate : domsihau A
affinity: feiudu /,‘ﬁT \l

Operating System Concepts — 8t Edition 5.35 Silberschatz, Galvin and Gagne ©2010

'7';

(e P

r o NUMA and CPU Scheduling

NUMA : Non-Uniform Memory Access

aondaenssunimslys NUMA a2l

A CPU has faster access to some parts of main memory than
to other parts.

CPU CPU

\ O
fast access ”’é‘oo fast access
@SS

memory memory

computer

/‘»““ -'\1

Operating System Concepts — 8! Edition 5.36 Silberschatz, Galvin and Gagne ©2010

o Multicore Processors

B Recent trend is to place multiple processor cores on the same physical chip

m SMP systems that use Multicore processors are Faster and consume Less
power than systems in which each processor has its own physical chip

® Multiple threads per core are also growing

e Takes advantage of memory stall to make progress on another thread
while memory retrieval happens

SMP : Symmetric Multiprocessing

Operating System Concepts — 8! Edition 5.37 Silberschatz, Galvin and Gagne ©2010

mv—f Memory Stall

C compute cycle M |memory stall cycle

thresd IS M C M c M C M

time

memory stall cycle : sanmii cpu fessomaifoyaiililfeglumitsanuildgnload 3l
wiheanus wu @ cache miss @eyandesmaiinns li'ldeglu cache memory)

Operating System Concepts — 8! Edition 5.38 Silberschatz, Galvin and Gagne ©2010

=N

.

‘fv’ Multithreaded Multicore System

thread % S M C M C M C M
0
thread™, S M C M C M C M
>
time
C | compute cycle M | memory stall cycle

Multithreaded processor cores in which 2 (or more) heardware

threads are assigned to each core.
Thus, if one thread stalls while waiting for memory, the core can

switch to another thread.

Operating System Concepts — 8! Edition 5.39 Silberschatz, Galvin and Gagne ©2010

“$7/ Operating System Examples

m Solaris scheduling
® Windows XP scheduling
® Linux scheduling

“

Operating System Concepts — 8! Edition 5.40 Silberschatz, Galvin and Gagne ©2010

?

I A"ﬁ"""‘j . .
> & Solaris Dispatch Table
time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

“

Operating System Concepts — 8! Edition 5.41 Silberschatz, Galvin and Gagne ©2010

& Solaris Scheduling

global scheduling
priority order
I 3 169 [
highest first
g interrupt threads
180
159
realtime (RT) threads
100
99
system (SYS) threads
60
99 | fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS} threads
owest ¥ 0 interactive (IA) threads V last

Operating System Concepts — 8! Edition 5.42 Silberschatz, Galvin and Gagne ©2010

I
r o Windows XP Priorities
ﬁﬁl—} high ﬁgfr\;eal normal Eglr?n“; ::?t!iirity

time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

Operating System Concepts — 8! Edition 5.43 Silberschatz, Galvin and Gagne ©2010

Hv—’ Linux Scheduling

Constant order O(1) scheduling time

Two priority ranges: time-sharing (or multitasking) and real-time
Real-time range from 0 to 99 and nice value from 100 to 140
See example picture on next slide

\

SRR

o™]
g

ol

Operating System Concepts — 8! Edition 5.44 Silberschatz, Galvin and Gagne ©2010

=

af.,:::ﬁ Priorities and Time-slice length

numeric
priority

0
99
100

140

Operating System Concepts — 8t Edition

relative
priority

highest

lowest

5.45

time
guantum

real-time
tasks

other
tasks

200 ms

10 ms

Silberschatz, Galvin and Gagne ©2010

11 -
(.«\m-&
&r"" A

i i

%l'_i;“".f’ List of Tasks Indexed According to Priorities

active
array
priority task lists
[0] O—O
[1] @@ @
[140] O

active array: ifvtask mihanueg
expired array:iiutask fivuanm

Operating System Concepts — 8t Edition 5.46

expired
array

priority task lists
[0] @@ @
[1] O

[140] o—0O

Silberschatz, Galvin and Gagne ©2010

=

-

e

o Algorithm Evaluation

m Deterministic modeling — takes a particular predetermined workload and
defines the performance of each algorithm for that workload.

Ex. Define all processes running in FCFS, SJF, RR and then find out
the result of minimum waiting time.

® Queueing models — what can be determined is the distribution of CPU
and 1/0 bursts. Knowing arrival rate and service rates, we can compute
utilization, average queue length, average wait time, and so on.

® Implementation — the only completely accurate way to evaluate a
scheduling algorithm is to code it up, put it in the OS, and see how it
works.

! F ~ 'I v-'\ 1 ...'I_. ‘
o ‘i‘%—f J
PAAS

Silberschatz, Galvin and Gagne ©2010

Operating System Concepts — 8t Edition 5.47

-3

f" Evaluation of CPU schedulers by Simulation

!L

_ ' performance
simulation = statistics

for FCFS
FCFS

CPU 10

/0 213
actual CPU 12 performance
process —=1/0 112 —— Simulation =» statistics

execution CPU 2 for SJF

/O 147

CPU 173 Sl

LN]

trace tape

performance
simulation —=»> statistics

for RR (g = 14)
RR (g = 14)

A X
Operating System Concepts — 8t Edition 5.48 Silberschatz, Galvin and Gagne ©2010

End of Chapter 5

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2010

	Chapter 5: Process Scheduling �By Worawut Srisukkham		Updated By Dr. Varin Chouvatut
	Chapter 5: Process Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times
	Alternating Sequence of CPU and I/O Bursts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm: Optimization Criteria
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Example of nonpreemptive SJF
	Example of preemptive SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Example of Priority Scheduling
	Round-Robin (RR) Scheduling
	Example of RR with Time Quantum = 4
	Time Quantum and Context-Switch Time
	Turnaround Time Varies with the Time Quantum
	Multilevel Queue Scheduling
	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling API
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multicore Processors
	Memory Stall
	Multithreaded Multicore System
	Operating System Examples
	Solaris Dispatch Table
	Solaris Scheduling
	Windows XP Priorities
	Linux Scheduling
	Priorities and Time-slice length
	List of Tasks Indexed According to Priorities
	Algorithm Evaluation
	Evaluation of CPU schedulers by Simulation
	End of Chapter 5

