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Abstract

Classical supervised learning from a training set of labelled examples assumes that the

labels are correct. But in reality labelling errors may originate, for example, from human

mistakes, diverging human opinions, or errors of the measuring instruments. In such cases

the training set is misleading and in consequence the learning may suffer.

In this thesis we consider probabilistic modelling of random label noise. The goal of this

research is two-fold. First, to develop new improved algorithms and architectures from a

principled footing which are able to detect and bypass the unwanted effects of mislabelling.

Second, to study the performance of such methods both empirically and theoretically. We

build upon two classical probabilistic classifiers, the normal discriminant analysis and the

logistic regression and introduce the label-noise robust versions of these classifiers. We

also develop useful extensions such as a sparse extension and a kernel extension in order

to broaden applicability of the robust classifiers. Finally, we devise an ensemble of the

robust classifiers in order to understand how the robust models perform collectively.

Theoretical and empirical analysis of the proposed models show that the new robust

models are superior to the traditional approaches in terms of parameter estimation and

classification performance.
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CHAPTER 1

Introduction

1.1 Classification & supervised learning

Classification is the task of inferring a function h : RM → R which maps an observation

input to a label response using a labelled set of training data so that we can use the

function to predict the response of an previously unseen observation in the future. The

training data are usually given as a set of (x, y) pairs, where x is an M -dimensional

observation vector representing a point in an M -dimensional space and y is a discrete

valued random variable representing the class label. It is assumed that the data pairs

(x, y) are sampled from some probability distribution. The role of the class labels is to

guide or to supervise a learning algorithm towards the desired classification rule which

minimises the error of classifying unseen data drawn from the same distribution.

The error can be quantified in a more concrete way by using the notion of loss (Vapnik

[1998]). Define L(h(x), y) to be the loss of predicting y using a decision function (i.e.,

a classifier) h. We are then interested in the expected loss (or risk) associated with the
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classifier h over all the data pairs,

R[h] = Ex,y[L(h(x), y))] (1)

where E[] is the expectation which is usually replaced by an average in finite samples cases

in practice, because the true expectation is unknown. In such cases, the expected loss is

called an empirical loss. According to the Empirical Risk Minimisation (ERM) principle,

the optimal classifier is the one that minimises the empirical loss. This seems like a good

approach provided that we have access to all the samples in the distribution and that

the training labels are all correct. However, in reality, we only observe the distribution

partially via a given set of training examples, which (possibly) contains labelling errors.

Therefore, care must be taken when learning the classifier as the training set available

might not fully represent the true underlying distribution. Picking the best classifier

that minimises the expected loss could lead to a decision function that does well on the

training data but performs poorly on unseen data. This phenomenon is often referred to

as overfitting.

A classical remedy for the overfitting problem, regardless of its origin, is to impose

some prior knowledge about the problem in the form of regularisation on the classifier h.

Rreg[h] = R[h] + λΦ(h) (2)

Φ is used to measure the complexity of h. A classifier with high complexity will fit training

data very well. The complexity measure can be defined in several ways using, for example,

VC-Dimension (Vapnik [1998]), Rademacher complexity (Bartlett and Mendelson [2003])

or the norm of the parameter of h. If h is an ensemble of classifiers, the number of

classifiers in the ensemble can be used as a complexity measure. Nonetheless all of the

complexity measures share the same property that, the more complex h is the higher the

2



value of Φ(h). Consequently the regularised loss gives rise to a multi-objective problem

where one has to reach a balance between fitting the observed data well using a high

complexity function and having a simpler function that sacrifices some training errors

for reduced overfitting by choosing an appropriate value of the regularisation parameter

λ. The process of selecting a good value of λ is often referred to as a model selection

problem. In general λ is chosen by cross-validation which validates a model using a small

subset of holdout samples.

In this research we will consider parametric probabilistic classifiers where the classifi-

cation rule, h, is obtained from a log ratio of class posterior probabilities. Estimating the

parameters for probabilistic classifiers is usually accomplished by optimising a log loss (or

negative log likelihood) using a Maximum Likelihood (ML) estimator. It can be shown

that ML behaves like the ERM principle for this particular loss function. Assuming that

the class label takes values from {0, 1}, a decision rule is defined as,

h(x) = log
p(y = 1|x, θy=1)

p(y = 0|x, θy=0)
(3)

From this we decide y = 1 if h(x) > 0. The most intuitive way to obtain the posterior

probability is by modelling the distribution that generates the data. This leads to the

generative approach where one assumes that the distribution of the data is one of the

known probabilistic distributions. According to this approach, one has to estimate the

parameters of class conditional probability distributions, after that the class posterior is

calculated using Bayes theorem.

p(y|x, θy) =
p(x|θy)p(y)

∑

y p(x|θy)p(y)
(4)

An example of the generative classifier is the Normal Discriminant Analysis (NDA)

where the data classes are assumed to be normally distributed according to the Gaussian

3



distribution. This assumption is considered reasonable as central limit theorem suggests

that as the number of underlying causes that a feature is made of grows the distribution

of that feature becomes approximately normal. Generative classifiers usually performs

very well if the data distribution agrees with the assumption. However, if the assumption

does not hold true the classification might not be accurate.

On the other hand, discriminative classifiers are based on the argument that “one

should solve the classification problem directly and should never solve a more general

problem as an intermediate step” (Vapnik [1998]). In other words, one should only need

to find the optimal decision rule separating the data and need not care about its underlying

distribution. Although the discriminative classification approach does not fully align to

the argument, the approach attempts to solve classification problem more directly than

the generative one, in the sense that it makes less assumptions on the data other than that

the data points are independent and identically drawn from some unknown distribution.

For the discriminative classifiers, what is important is the hyperplane separating the data

according to the given labels. Under the discriminative model a class posterior is obtained

from

p(y = 1|x, θ) = f(x, θ) (5)

where f is any real-valued function. For example in Logistic Regression (LR), the sigmoid

function f(x,w) = 1/(1 + exp(wTx)) is used to model the posterior probability.

1.2 Learning from mislabelled data

Regardless of the learning approach used, an integral part of the supervised learning

framework is that the class labels guide the learning algorithm towards the desired classi-

fication rule. Unfortunately, there is often no guarantee that the given labels are perfect.

Label errors are increasingly noticeable in today’s classification tasks; as the scale and
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difficulty of the labelling task increases, it becomes nearly impossible to obtain perfect

label assignments. Mislabelling originates from several sources, including the subjective

nature of the labelling task, the effect of communication noise and the lack of information

to determine the true label of a given example. More recently, class label noise emerges

as a side effect of crowdsourcing practices where annotators of different backgrounds are

asked to perform labelling tasks (Snow et al. [2008], Raykar et al. [2010]). For example,

Amazon’s Mechanical Turk, Citizen science, Galaxy Zoo, to name just a few.

Label noise can be roughly categorised into two groups: random noise and non-random

noise (Sloan [1995]). In all cases of label noise, it is likely that classical supervised learning

that assumes perfect labels from the parameter estimation stage to the model selection

stage, would be negatively affected. Indeed, class label noise inherent in training samples

has been reported to deteriorate the performance of the existing classifiers in a broad

range of classification problems (Krishnan and Nandy [1990], Lawrence and Schölkopf

[2001], Yasui et al. [2004], Malossini et al. [2006]).

There is an increasing body of research literature that aims to address the issues related

to learning from samples with noisy class label assignments. The seemingly straightfor-

ward approach is by means of data preprocessing where any suspect samples are removed

or relabelled (Brodley and Friedl [1999], Barandela and Gasca [2000], Maletic and Marcus

[2000], Sánchez et al. [2003], Muhlenbach et al. [2004], Jiang and Zhou [2004]). However,

these approaches hold the risk of removing useful data too, which is detrimental to clas-

sification performance, especially when the number of training examples is limited (e.g.

in biomedical domains). Most previous approaches try to detect mislabelled instances

based on various heuristics, and very few take a principled modelling approach — with

the notable exceptions of (Norton and Hirsh [1992], Lawrence and Schölkopf [2001], Li

et al. [2007], Raykar et al. [2010]).

In this thesis we will consider the random misclassification noise and attempt to model
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the label noise process probabilistically. The random label noise modelling is considered

to be more generic than the non-random noise modelling. By contrast, the latter is more

application specific as one needs to encode prior expertise into the model to reflect how

non-random noise would have occurred. Interestingly, we shall see in the subsequent

chapters that the random noise model works pretty well even in situations where the

randomness assumption does not hold true. For example in the ‘Image classification

problem’ (Chapter 6) where we train a classifier using images returned by an image search

engine (think of the search engine as a labeller). Apparently the search engine must have

used textual information around an image to determine the label of the image, hence there

exist some dependency between an image and its label. Also in microarray classification

(Chapter 5) it is very likely that the labelling process is not entirely independent of the

microarray measurements, and yet the random noise model is successfully applied.

1.3 Research challenges & aims

Existing research on learning from data with label noise had been carried out in two

unconnected streams. The first, mostly done by statisticians concerns theoretical analysis

of the effects of mislabelling on traditional classification algorithms in the asymptotic

regime (Chhikara and McKeon [1984], Bi and Jeske [2010]). They gave extensive analysis

of how label noise affects the performance of the algorithms, but never shed light on

how to deal with the problem. For example, the analysis of the effect of label noise on

normal discriminant analysis and logistic regression is enlightening, but does not solve the

problem, since no modification to make the method robust has been given (Lachenbruch

[1974], Bi and Jeske [2010]). Asymptotic analysis is also less useful in machine learning

as the possibility is low that we have infinite number of data points.

By contrast, the second stream focuses mainly on how to improve traditional learning

algorithms for dealing with label noise in an ad-hoc manner. Many of them that have been
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shown to work well are heuristic methods (Malossini et al. [2006], Zhang et al. [2009]).

However what is missing is an analysis of why doing so can alleviate the effect of label

noise. Such analysis is important so that practitioners can see whether or not the method

is readily applicable to their problem, and at which point they need to modify the method

in order to use it in their problem.

From the above issues and gaps in the existing literature, we identified the research

challenges described in the following three subsections. These have motivated our study

in the thesis.

1.3.1 Probabilistic label noise modelling

We position ourselves in a more principled approach than existing heuristics. Our main

goal is to develop probabilistic classifiers that can withstand the adverse effects of misla-

belling. To begin with, we choose two well known generative and discriminative methods:

Normal Discriminant Analysis and Logistic Regression, as our baselines. We build a

noise model on these classifiers so that a solid basis of previous results are available for

comparison.

Inspired by the probabilistic approach to improving the robustness of Fisher’s Dis-

criminant Analysis for binary classification under label noise (Lawrence and Schölkopf

[2001]), we think that it would be desirable and useful to generalise such probabilistic

modelling to multi-class problems. It is also a challenge to incorporate a similar robusti-

fication approach in discriminative classification framework to yield a label noise tolerant

classifier. As far as classification is concerned, it transpires from the literature that a

discriminative classifier is more preferable in general (Ng and Jordan [2001]). This leads

us to develop and study a probabilistic noise model in the logistic regression and the

multinomial logistic regression in Chapter 4 and Chapter 5.

Equally important to the probabilistic modelling and the development of learning
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algorithms is to understand their behaviour theoretically. Such analyses would enable us

to say whether the new classifier is superior to the traditional classifier and to quantify the

achievable classification performance, with more rigour than we can observe empirically.

1.3.2 Model selection in the presence of label noise

A common practice in model selection is to use cross-validation (Arlot and Celisse [2009]).

The technique is legitimate in an idealised setting where the labels are all perfect. Un-

fortunately the approach might not be suitable when the training labels are erroneous

as it inevitably makes use of the noisy labels. To the best of our knowledge, previous

work that requires us to perform model selection in the presence of label noise simply

assume that there is a trusted validation set for cross-validation purpose (Lawrence and

Schölkopf [2001], Li et al. [2007]). We found that those trusted validation set could limit

the usability of the method in the case where the number of samples is limited. We ask

the question if there is a better alternative to the standard cross-validation for model

selection which does not require a trusted validation set and yet it puts less emphasis on

noisy labels.

To investigate the problem, we will extend the robust logistic regression presented

in Chapter 4 for non-linear problems using a well-known kernelising technique (Zhu and

Hastie [2001]). In addition, appropriate regularisers are added to incorporate prior knowl-

edge about the classification task at hand. The new robust kernel logistic regression then

requires us to perform model selection for both the kernel parameter and the regularisa-

tion parameter. It will enable us to gain better understanding about the problem and

to come up with a good solution. We shall demonstrate in Chapter 6 that under noisy

label scenario the tuning of the regularisation parameter can be accomplished efficiently

and effectively using Bayesian regularisation, while the kernel parameter can be optimally

selected using Multiple Kernel Learning (MKL) framework.
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1.3.3 Limitations of the probabilistic noise model

Suppose that it turns out that we can successfully turn the standard classifier of interest

into a robust classifier using the label noise modelling and that model selection problem

can be addressed in a satisfactory manner. We are even more interested in finding out if

the technique will be general enough so that any classifier can be made robust by using the

proposed technique. Specifically, what is the limitation of the robustification technique?

We conjecture that the complexity of the target classifier determines whether or not

the robustification will be successful. To investigate this question we take an ensemble

of classifiers to be our baseline which the noise model will be built on. In theory, an

ensemble has an unbounded complexity and thus it will enable us to find some answer to

this latter question raised. We will study the behaviour of the robust ensemble machine

under label noise in Chapter 7.

In summary, the aim of this research is to come up with principled new algorithms that

remedy the problem of learning in the presence of labelling errors, together with a rigorous

analysis of the approaches. That is, the goal is not only developing new algorithms but

also analysing the obtained algorithms. This will result in a more complete understanding

of the advantages and the limitations of the methods, and hence may guide applications

or modifications of the proposed methods at a later point.

1.4 Contributions of the thesis

The main contributions of the thesis to the area of learning under labelling errors are

summarised as follows.

• The development of label-noise robust Logistic Regression and label-noise robust

Multinomial Logistic Regression together with efficient algorithms to learn the mod-

els simultaneously with estimating the label flipping probabilities. A convergence
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guarantee of the algorithms is also presented.

• A multi-class extension and an analysis of robust Normal Discriminant Analysis,

and an analysis of the robust Logistic Regression. The analyses show that under

best case scenario assumptions both of the robust algorithms output more accurate

parameter estimates.

• A novel approach to model selection in the presence of label noise and empirical

evidence showing that standard cross-validation is not optimal under such setting.

The new approach based on a Bayesian regularisation and Multiple Kernel Learn-

ing technique puts less emphasis on noisy labels, yields a superior model and is

significantly faster than cross-validation.

• The development of a robust AdaBoost together with empirical results showing that

the novel boosting algorithm is resilient to label noise. We also present an efficient

way to incorporate extra information about good labels to alleviate the unwanted

effect of unbounded complexity of an ensemble machine.

• Demonstration of several important applications of label-noise robust classifiers, in-

cluding gene expression analysis, learning from crowdsourced data and class topol-

ogy discovery.

1.5 Outline of the thesis

The thesis is organised as follows. The subsequent chapter presents the background and

existing work in the area of learning from data with label noise.

Chapter 3 presents a generalisation of the binary robust Fisher Discriminant Analysis

of Lawrence and Schölkopf [2001] to multi-class classification problems. Empirical evalu-

ations are then presented to demonstrate the clear benefit of the label noise model. The
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chapter ends with a theoretical analysis of the model. Specifically, we derive a generali-

sation error bound of the model with shared covariance for binary and multi-class cases.

Further analysis concerns the comparison of parameter estimation between the robust

model and the traditional model.

Chapter 4 describes a development of the label-noise robust Logistic Regression and its

multi-class extension. An efficient multiplicative learning algorithm is presented to learn

the model as well as the label flipping parameters. The convergence of the algorithm is

also proved in this chapter. In addition, theoretical analysis is given to show that the

model is less likely to overfit to noisy label and that its parameter estimates are more

accurate compared to the traditional model. The chapter ends with extensive empirical

validation using both artificial and real world datasets.

Chapter 5 develops a robust Sparse Bayesian Logistic Regression for an important

real-world problem: learning from noisy data in biomedical domain. In this domain a

sparsity promoting prior is required to tackle the high dimensional data with limited data

samples. A new algorithm is developed specifically for learning the robust model which

employs non-convex and non-differentiable objective. The proposed method is applied to

microarray datasets which have been reported to contain wrongly labelled samples with

biological evidence. The experimental results demonstrate convincingly that the robust

model has a performance advantage over the traditional model in this particular type of

problems.

Chapter 6 extensively studies model selection in the presence of labelling errors. In this

chapter, the robust Logistic Regression and the robust multinomial Logistic Regression

are kernelised in order to be able to deal with non-linear classification problems. As

a consequence, an optimal regularisation parameter and kernel parameter need to be

determined. We adopt a Bayesian regularisation technique for determining a good value

of regularisation parameter and introduce a variant of Multiple Kernel Learning framework
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as a tool to choose a good kernel parameter.

Chapter 7 investigates the limitations of the label noise modelling approach, where

an ensemble machine is used as the subject of the study. We robustify the AdaBoost

algorithm using the modelling technique similar to those presented in the previous chap-

ters, and we introduce a new robust boosting method called the rBoost algorithm. Initial

results show that the unbounded complexity of the boosting-type classifier could interfere

with the learning of the label flipping parameters. We then suggest a way to efficiently in-

corporate additional information about the label flipping into the new boosting algorithm.

Empirical studies reveal that the rBoost algorithm is superior to the original AdaBoost

when there is extra information available, and it is no worse than the the original when

no such information is provided.

Finally, Chapter 8 summarises the research challenges and questions, as well as the

answers to those questions. The conclusion of the study and the outlook for future work

finalises the thesis.

1.6 Publications from the research

Submitted & Published refereed journal paper

• Jakramate Bootkrajang and Ata Kabán. Classification of mislabelled microarrays

using robust sparse logistic regression. Bioinformatics, 29(7):870–877, 2013b

• Jakramate Bootkrajang and Ata Kabán. Learning kernel logistic regression in the

presence of class label noise. Pattern Recognition, 2013c. revised and resubmitted

Published refereed conference paper

• Jakramate Bootkrajang and Ata Kabán. Multi-class classification in the presence

of labelling errors. In Proceedings of the European Symposium on Artificial Neural
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Networks, Computational Intelligence and Machine Learning, (ESANN’11), pages

345–350, 2011

• Jakramate Bootkrajang and Ata Kabán. Label-noise robust logistic regression and

its applications. In Proceedings of the European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in Databases, (ECML-

PKDD’12), pages 143–158, 2012

• Jakramate Bootkrajang and Ata Kabán. Boosting in the presence of labelling er-

rors. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence,

(UAI’13), 2013a

1.7 Software availability

A software suite containing all the label-noise robust classifiers developed in this study is

available at http://cs.bham.ac.uk/∼jxb008/code/ntc.zip
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CHAPTER 2

Background and Related Work

This chapter reviews previous studies and research related to learning from data with noisy

labels. Section 2.1 gives an overview of types of label noise. Section 2.2 presents studies

devoted to understanding the impact of label noise on traditional classifiers. Section 2.3

then presents approaches that have been devised to counteract the effect of mislabelling.

Finally existing theoretical analyses regarding learning in the presence of label noise are

given in Section 2.4.

2.1 Types of label noise

Class label noise can be categorised into two major types: random noise and non-random

noise. Random label noise is a noise that occurs independently from the observation input

so that label flipping is equally likely to appear any where within the class. Random

noise may originate from channel noise in the communication media, for example, in data

acquisition by remote sensing. Recently, the noise results as a by product of crowdsourcing

practice where a user is asked to perform a labelling task. The noise maybe random in

this case because it is possible that the user wants to increase his productivity by simply

giving out the label without actually looking at the input samples. On the other hand,
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Figure 2.1: Random and non-random label noise

the non-random noise is a noise that depends on the observation such that the sample’s

features have some influence on the assignment of the label. By nature, non-random noise

tends to appear more near the decision boundary where the samples are harder to classify

(Takenouchi et al. [2008]). Non-random class noise can also be found in spam filtering

tasks where label noise is intentionally designed to mislead the spam classifier as much

as possible (Biggio et al. [2011]). In particular, let f(x) be a function representing the

probability that the label of an input x has flipped into the other class. The above two

types of noise can be written compactly as,

f(x) =















ck, random noise, where k is the true class of x

1
|βTx|

, non-random noise as a function of distance from decision boundary

(1)

where ck={0,1} is a constant, and β is a vector perpendicular to the decision boundary.

It can be the weight vector of the logistic regression or the vector connecting the means

in the normal discriminant analysis. Figure 2.1 illustrates random and non-random label

noises on a 2D classification problem. From the application viewpoint, random noise may

be considered to be more generic as it requires fewer assumptions about the nature of

the noise. A non-random noise, however, is more application dependent such that prior
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Figure 2.2: Symmetric and asymmetric label noise

knowledge about the nature of noise must be encoded into the model in order to be able

to deal with the noise effectively.

We can further divide random noise and non-random noise into two subtypes, namely

symmetric noise and asymmetric noise. The symmetric noise is a noise that occurs uni-

formly across the classes. That is, for example, the probability of label flipping from

positive class to negative class and vice-versa is equally likely. Asymmetric noise, how-

ever, is a noise that occurs more in one class than the other. Assuming that the classes

are distributed symmetrically in the data space, symmetric label noise is relatively harm-

less compared to asymmetric noise as shown by Lachenbruch [1966] and Lugosi [1992].

For illustrative purpose, Figure 2.1 shows symmetric and asymmetric label noise on a

2D classification problem. In the next section we shall see how class noise affects the

performance of traditional classifiers.

2.2 Impact of label noise

Although the problem of label errors dates back about half a decade, in the early days

label noise had been naively ignored or was understood to be tolerable. Partly because

the scale of the classification at that time was not large, so that perfect labelling of the

training set was still possible. One of the first efforts to analyse the capability of classical
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classifiers to withstand the negative effect of label noise when learning from a corrupted

labelled dataset is given in Lachenbruch [1966]. There, the effect of random class noise

on linear discriminant function is studied. The study concluded that the performance of

the classifier is slightly effected if the label flipping is symmetric.

Later on, Lachenbruch [1974] extends the analysis to cover the non-random label noise

case. The criterion for the non-random noise is based on the distance of the observation

from the class mean and hence more mislabellings are observed near the decision bound-

ary. The experiments showed that a symmetric noise is also relatively harmless in the

non-random noise case. These initial works are classical examples to demonstrate that

symmetric noise is less problematic. However, as we shall see in the subsequent chapters,

symmetric noise is relatively harmless only when the initial distributions of the classes

before label flipping are similar. If they are not, symmetric noise could be as harmful as

asymmetric noise.

Chhikara and McKeon [1984] also investigated the effect of the random and non-

random misallocation on parameter estimates of classical linear discriminant analysis.

Based on the setting in Efron [1975], where the efficiency of linear discriminant analysis

in perfect label case was analysed, the study focused on data points from two multivariate

normal distributions differing in mean but not covariance, and training examples are

misallocated with known label flipping probabilities. The study concluded that the Fisher

classification rule (i.e., Bayes rule without class priors) is more robust than the Bayes

classification rule when the prior of corrupted data is approximately equal to the true

priors before flipping.

More recently Bi and Jeske [2010] compared the effect of noisy labels for linear dis-

criminant analysis and logistic regression. Their setting is similar to that in Efron [1975]

and Chhikara and McKeon [1984], the model is multivariate normal populations having a

common covariance matrix. They showed that when the noise level is low the error rates
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of both methods are only slightly effected. They further showed that logistic regression is

more tolerant to class noise than linear discriminant analysis. In the subsequent chapter

we shall see if the phenomenon can still be observed in the case where the robust version

of the two classifiers are compared (Chapters 4 and 6).

Even though all of these initial work suggest that learning from noisy label can be

problematic, in particular for classical learning methods, they did not give any remedy

for the problem (i.e. how to avoid the adverse effect and learn a classifier more effectively).

Beyond a single classifier, an ensemble of classifiers is also susceptible to class noise. In

this study we focus ourselves on a boosting-type technique called AdaBoost (Freund and

Schapire [1995]). Basically AdaBoost (or boosting in general) aims to construct a strong

classifier from multiple base learners or weak learners. The definition of weak learnability

is the following.

Weak learnability (Kearns and Valiant [1994]) Let C andH be representation classes

over X. Then C is weakly learnable from examples by H if there is a polynomial poly

and an algorithm A taking input δ, with the property that for any target representation

c ∈ C, for any target distributions D over X and for any input value 0 ≤ δ ≤ 1, algorithm

A halts and outputs a representation hA ∈ H that with probability greater than 1 − δ,

satisfies errD(hA) ≤ 1
2
− 1

poly(|c|)
. The algorithm A is then called a weak learner.

In boosting a new base learner is directed towards classifying a data point that has

been misclassified by the previous base learners. A final prediction is made by a weighted

combination of the predictions from all base learners in the ensemble. From this basic

philosophy of boosting it is easy to see that overfitting wrongly labelled samples in the

training set is inevitable. Although Freund and Schapire have shown, for the perfect

label cases, why the problem is unlikely to happen using a concept related to margin

maximisation (Schapire [1999]), overfitting can still be observed in practice. Recently
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Long and Servedio [2010] have shown that all convex potential boosters are affected by

random label noise. These boosters include AdaBoost, where an exponential loss is used,

LogitBoost (Friedman et al. [1998]) where a binary log loss is employed. All of these are

optimising a convex function.

2.3 Previous solutions to the problem

Label noise treatment can be categorised into two streams – model-based approaches and

filtering approaches. In a nutshell, a model-based approach is an approach that attempts

to model the label noise process explicitly, while a filtering type approach is typically

concerned with preprocessing the data by removing or relabelling any suspect instances.

2.3.1 Filtering approaches

More often label noise is dealt with in an ad-hoc, heuristic manner. The most common

way to deal with label noise is by using the method of data preprocessing. Various

techniques such as data filtering, data removal or relabelling have been reported to be

effective against label noise.

For example, Barandela and Gasca [2000] introduced an algorithm called ‘Depuration’

to iteratively modify samples whose class label disagrees with the class label of most of

their nearest neighbours and remove such point if the disagreement exceeds a predefined

threshold. Sánchez et al. [2003] used several variations of the k-Nearest Neighbour (k-NN)

classifier including Depuration and nearest centroid neighbourhood to detect mislabelled

examples. Muhlenbach et al. [2004] also proposed an approach based on nearest neigh-

bour framework. The method is designated to remove or relabel the suspect instances.

Empirical results obtained from 1-NN classifier suggest that removal gives better result

than relabelling.

The above mentioned techniques can be regarded as local learning methods. They
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assume that the class label of mislabelled example tends to disagree with the class label

of other examples in its close vicinity. The merit of this approach is its robustness to

class shape as it makes no assumption on the distribution of data. However, there are

some drawbacks associated with a local learning regime. Firstly the method relies on

an assumption that most of its neighbours are correctly labelled. Secondly, mislabelling

detection is performed locally without propagating decision to other examples (Valizade-

gan and Tan [2007]). Thirdly, the nearest neighbour method has to set the number of

neighbourhood parameter, k, and a disagreement threshold. There is no clear principled

way to set these parameters. Lastly the method tends to fail when data lies in a high

dimensional space where the notion of neighbourhood becomes unusable. This due to

the concentration property that points in very high dimensional space are equally spaced

(Beyer et al. [1999]).

Brodley and Friedl [1996] investigated the use of an ensemble of algorithms to detect

mislabelled example in the training data. The technique consists of two stages. The

first stage involves the identification of mislabelled examples using consensus filter and

majority vote. A consensus filter marks an example as being mislabelled only if it is

misclassified by all the classifiers in the ensemble. A less conservative method is to consider

an example to be mislabelled if its label disagrees with the majority vote of the classifiers.

For the second stage, a classical classification algorithm is applied to the cleaned dataset.

Their experimental results showed that data filtering improves classification accuracy for

noise level up to 20%. Pechenizkiy et al. [2006] empirically studied the negative effect

of label noise on supervised learning in medical domains. The work claimed that feature

extraction method can be used to diminish the effects of label noise during the learning

process.

Zhu et al. [2003] introduced a method based on partitioning a large data set into

smaller subsets and building a corresponding classifier for each subset. The classification
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rules derived from each subset can then be used to filter the whole dataset. Jiang and Zhou

[2004] considered an ensemble of neural networks to edit class labels for k-NN classifier.

A neural network ensemble trained from original dataset generates new class labels which

are then used to replace original class labels. Venkataraman et al. [2004] also employed

an ensemble approach using the support vector machine for facial recognition application.

SVMs are trained on different feature subsets which results in different discriminating

subspaces. They claimed that the method is effective against mislabelling. However,

the problem with the approach is that the classifiers in an ensemble are built from a

training set that still contains mislabelled data. Another problem is that this method

requires that 1) the errors committed by the base classifiers are independent of each

other, and 2) the error rates of the base classifiers should be less than 50%. In many cases

these requirements cannot be fulfilled trivially as pointed out by Valizadegan and Tan

[2007]. Therefore, Valizadegan and Tan [2007] reformulated label noise detection as an

optimisation problem and introduced a kernel-based approach for filtering the mislabelled

examples. The approach also has a mechanism to propagate label error information. They

claimed that their approach is more effective than nearest-neighbour and ensemble-based

schemes. However, their approach is limited to binary problems.

The classical techniques to avoid overfitting can also be applied explicitly in order to

learn from mislabelled data. John [1995] proposed an iterative method to clean the dataset

using C4.5 algorithm (Quinlan [1996]). A decision tree is built from an original dataset

then pruned using C4.5 algorithm to avoid overfitting on noisy examples. Confusing

instances are defined to be those incorrectly classified by the pruned decision tree. Those

instances are then removed from the training set.

Dietterich and Bakiri [1995] developed a method for learning classifiers for multiple

classes in which error-correcting scheme are employed as a distributed output representa-

tion. They viewed classification as a communication problem in which the identity of the
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correct output class for a new example is being transmitted over a noisy channel. Empiri-

cal results show that the error-correction scheme can also be used to improve classification

performance.

The recent trend in mining from biological datasets poses a new challenge. As Mal-

ossini et al. [2006] pointed out that traditional mislabelling detection is not robust enough

to be used in the case where the number of features is much larger than the number of

training instances. They presented an algorithm for detecting possible mislabelled points

in microarray dataset. The key structure is the use of leave-one-out perturbation matrix,

which is used to measure stability of the label of an example and produced the list of sus-

pect examples. Those examples are then relabelled or removed and the cleaned dataset is

passed along as a training set to final classifier. Zhang et al. [2009] extended the work by

Malossini et al. [2006] by introducing the leave-one-out regression matrix which outputs

stability measurements in a more fine-grained manner. They claimed that their approach

outperforms the original perturbation measurement method of Malossini et al. [2006]. In-

terestingly these two approaches implicitly take into account the effect of having a point

in the dataset versus having it removed. A limitation of this approach is that it assumes

that the points taking part in the leave-one-out validation have correct labels. This is

somewhat analogous to the limitation of the nearest neighbour type methods as pointed

out earlier. In addition, one must be aware that any errors made in separate stages of

analysis will necessarily accumulate.

2.3.2 Model-based approaches

In contrast to the filtering approach, a model-based approach is more principled and more

transparent as it includes an explicit model of the mislabelling process as an integral part

of modelling the data. To the best of our knowledge, there were only few attempts to

approach the problem by modelling the noise process explicitly. Norton and Hirsh [1992]
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suggested learning from noisy data by incorporating prior knowledge of the noise process.

In the study, the posterior probability of each hypothesis in the hypothesis space being

searched is computed in order to prune out bad hypotheses. They empirically found that

their maximum a posteriori (MAP) approach is superior to the C4.5 pruning algorithm.

Chittineni [1982] incorporated label noise parameters in his likelihood function and de-

rived a maximum likelihood estimator for estimating the misclassification parameters from

labelled and unlabelled data. He also introduced simple model to identify mislabelling

instances in terms of thresholds on a linear discriminant functions for both two-class and

multi-class cases. His approach is rather specialised to the semi-supervised learning.

Lawrence and Schölkopf [2001] incorporated probabilistic noise model in their Kernel

Fisher Discriminant for binary classification. Assuming that the data class distributions

are Gaussian, they empirically showed that the classification accuracy improves over the

model that assumes no label noise. Based on the same model, Li et al. [2007] carried

out extensive experiments on more complex datasets, which convincingly demonstrated

the value of explicit modelling. The extension of the model to a multi-class setting will

be presented in Chapter 3. This extension has further motivated the recent development

of a label noise-tolerant Hidden Markov Model to improve segmentation (Frénay et al.

[2011]).

While all these works demonstrate the great potential and flexibility of a model based

approach, they most fall in the category of generative methods. For classification prob-

lems, discriminative methods are also of interest, and similar algorithmic developments

for discriminative classifiers are still limited. Magder and Hughes [1997] studied logistic

regression with known label flipping probabilities. Hausman et al. [1998] has given a foun-

dation of a statistical model for binary classification problem but provide no algorithmic

solution to the learning of label noise parameters.

Recently Raykar et al. [2010] proposed an EM algorithm to learn the latent model
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logistic regression similar to that discussed in Hausman et al. [1998] for data with multiple

instances of noisy labels. In this thesis we will present a more efficient gradient-based

algorithm to optimise a latent variable logistic regression model for problems where only

a single set of labels is available (Chapter 4). A sparse extension of the model will also

be explored in Chapter 5. In a different but related context, Amini and Gallinari [2005]

used noise modelling to approach semi-supervised learning. They randomly assign labels

to an unlabelled training set and use the noise model to recover the true labels in order to

enlarge the labelled dataset. Krithara et al. [2008] further used the framework in Amini

and Gallinari [2005] to extend Probabilistic Latent Semantic Analysis (Hofmann [2001])

to incorporate mislabelling error. Empirical results show that their method is superior to

previous methods that use a model without mislabelling error model.

There are also attempts to counteract label noise in the context of boosting. These

boosters include the LogitBoost (Friedman et al. [1998]) that optimises the binary log-

loss, the Gentle-AdaBoost (Friedman et al. [1998]) that is more stable because of a more

conservative update step, and the Modest-AdaBoost (Vezhnevets and Vezhnevets [2005])

which penalises the ensemble when it makes a correct prediction on previously correctly

predicted instances. Krieger et al. [2001] proposed a boosting algorithm in which bagging

is combined with boosting to average out the adverse effect of noisy labelled data. There

is also a heuristic approach by Karmaker and Kwek [2006] where points that are too

difficult, i.e., those with very high weights, are removed from the training set according

to a predefined threshold. Yasui et al. [2004] proposed an EM-boosting algorithm to deal

with label noise in high dimensional biological data. They replaced the true label in the

boosting objective with the observed label and treated the true label as missing value.

An EM-type algorithm is then used to optimise the new objective. Some improvements

in misclassification rates are observed with the new algorithm. However, rather curiously,

all of the existing robust boosters are still optimising a convex exponential loss – which
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is shown to be non-robust against random misclassification (Long and Servedio [2010]).

Motivated by the finding of Long and Servedio, Freund [2009] proposed a more robust

boosting algorithm which optimises a non-convex potential function instead of the tradi-

tional exponential loss function. The general idea is to incorporate early stopping as well

as a mechanism to give up if the instance is to far away on the wrong side of the decision

boundary. The approach shows promising results but unfortunately the boosting process

becomes more complicated in that it also introduces a free parameter that has to be

tuned. Freund suggests using cross-validation to tune the parameter however we can not

rely on the cross-validation if our labels are noisy, unless if we have a trusted validation

set with correct labels. Takenouchi et al. [2008] proposed a multi-class robust boosting

based on a Bregman U-divergence loss for non-random misclassification. The theoretical

and empirical results are encouraging. However, the algorithm also has free-parameter

that needs to be tuned and the author simply used standard K-fold cross-validation for

that purpose. These shortcomings of the traditional boosting algorithms will be addressed

and discussed in more depth in Chapter 7.

2.4 Existing theoretical analyses

In the context of learning theory, there are some work devoted to studying the problem

of Probably Approximately Correct (PAC) learning from training examples with noisy

labels (Angluin and Laird [1988], Kearns and Li [1988]). The PAC learning framework

(Valiant [1984]) can be defined as follows.

Let X be an instance space with governing distribution D such that each x ∈ X is

assigned with a probability. Define a concept class C to be a family of concepts c1, c2, ..., cn.

The task is to learn a concept of interest, denoted c∗ using an algorithm A. The algorithm

A will identify the target concept via a series of queries to the so-called oracle T . In each

query, the oracle T will randomly draw a sample x from the distribution D and returns
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(x,+) if x ∈ c∗ and (x,−) if x /∈ c∗. The learning is said to be Probably Approximately

Correct if given a tolerance parameter ǫ and a confidence parameter δ after a series of

queries to the oracle an algorithm A outputs a concept ca satisfying,

p[d(ca, c∗) ≥ ǫ] ≤ δ (2)

Here, d(ca, c∗) is defined to be
∑

x∈ca△c∗
pD(x), where △ is symmetric difference operator.

In other words, d() defined an error measure that counts up the misclassification of sample

x.

Focused on learning a class of k-Conjunctive Normal Form, Angluin and Laird [1988]

found that standard algorithms that are PAC-learnable under clean data can often be

generalised to handle a certain amount of random noise providing that there are plenty

of training examples. In this setting, the oracle T is now not faithful such that it returns

(x,+) if x ∈ c∗ with probability 1−β and returns (x,−) with probability β even if x ∈ c∗,

hence T is an imperfect teacher. They came up with an upper bound for the number of

training instances required to PAC-learn the concept class. The only constraint is that

the noise level, β must be lower than one half.

Kearns and Li [1988] also studied learning from imperfect data under PAC framework.

The study concerns PAC learning from examples with a worst-case error model in which

label noise is maliciously generated by an adversary in order to fool the learning algorithm

as much as possible. They follow the assumption from Valiant [1985] that there is a fixed

probability 0 ≤ β < 1/2 of error occurring independently but its nature is arbitrary. They

obtain an upper bound on the maximum error rate at which the concept class such as,

monomial, k-CNF and k-DNF are PAC-learnable using an algorithm A. Interestingly, in

their study, the error model did not distinguish between label and attribute error. When

considering only the case of labelling errors, those bounds are inappropriate as they are
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too general.

Sloan [1995] extends the work of Angluin and Laird [1988] by considering four possible

types of noise (label and attribute) in data for PAC learning. One of the case is where

the noisy label is non-random. He referred to this kind of noise as a malicious misclassi-

fication noise. He showed theoretically that malicious misclassification noise is no more

harmful than random misclassification noise. Gentile and Helmbold [2001] presented an

information-theoretic approach for obtaining a lower bound for the number of training

examples required for PAC learning in the presence of label noise. They showed that the

obtained bound is tighter than the previously known lower bound. Lugosi [1992] theoret-

ically showed that symmetric label noise is relatively harmless compared to asymmetric

ones.

From the literature review, it can be seen that existing methods still have some inad-

equacies that limit their applicability, and it is apparent that there is still some room for

improvement. As identified and described earlier in Chapter 1, we will try to address some

of these limitations in this thesis. This includes a novel development of robust generative

and discriminative classifier for both binary and multi-class problems together with sev-

eral useful extensions, a novel approach to model selection in a noisy label environment

and a robust boosting algorithm. Hopefully the novel developments proposed will correct

the inadequacies and should serve as alternatives for the classification practitioner whose

task contains label errors. The transparency of our approaches as well as their theoretical

analysis would also enable practitioners to further modify or extend our methods to better

suit their needs with ease.
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CHAPTER 3

Multi-class Robust Normal Discriminant Analysis

One of the most transparent and widely used classification paradigms in machine learn-

ing is generative modelling. Under a generative assumption one tries to learn the joint

distribution that generates the input-label pairs from a training dataset one has at hand.

Assuming some parametric form for the distribution and estimating its parameters, class

membership can then be calculated using the Bayes rule. In the presence of label noise, the

noise can interfere with the parameter estimation and this leads to sub-optimal estimated

distribution.

In this chapter, we take a generative classifier called multi-class quadratic and linear

normal discriminant analysis and extend it to incorporate a model of the mislabelling pro-

cess. We will refer to this model as the ‘robust Normal Discriminant Analysis’ (rNDA) to

distinguish it from the classical Normal Discriminant Analysis (NDA). We shall demon-

strate the clear benefits of rNDA in terms of improved estimates of the class-conditional

distributions, and improved classification performance on both synthetic and real-world

multi-class problems in comparison to NDA and a previous model-free approach (Depu-

ration) (Barandela and Gasca [2000]). Some theoretical analysis of the performance of

rNDA is also presented. We give a generalisation error bound of rNDA conditioned on a
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fixed training set, and we also show that its parameter estimation is more accurate than

that of the classical model.

3.1 The model

In Lawrence and Schölkopf [2001] Fisher discriminant analysis in the presence of label

error is discussed. Inspired by this work, we incorporate a probabilistic model of the

label flipping process into multi-class normal discriminant analysis. Consider a training

set S = (xn, ỹn)
N
n=1, where xn are the observation input vectors and ỹn ∈ {1, . . . , K} are

their given (possibly noisy) class labels. We start by formulating a mixture model for this

data. Denote the model’s parameters as Θ = {θj}Kj=1, we write the data likelihood as

L(Θ) =
N
∏

n=1

p(xn|ỹn, θỹn)p(ỹn) (1)

Since there exist label noise in the data, learning the model from the observed labels ỹ is

no longer valid. To address the problem, we introduce a latent variable y to represent the

true label associated with the input vector x. Under this assumption the data likelihood

can be expressed as:

L(Θ) =
N
∏

n=1

∑

y

p(xn|y, ỹn, θỹn)p(y, ỹn) (2)

From this formulation we have two ways to write down the joint probability of pair of

true and observed labels.

p(y, ỹ) = p(y|ỹ)p(ỹ) = p(ỹ|y)p(y) (3)

These two factorisations, although are equivalent by definition, correspond to two different

graphical models shown in Figure 3.1. The first, Figure 3.1(a), is more intuitive when one

wants to explain how the data was generated. In this case the input vector and observed
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Figure 3.1: The variable y and ỹ represent true and observed label respectively. Naturally,
an arrow points from y towards ỹ indicating that a wrong label originates from a true
label (a). However by definition we can reverse the direction of the arrow to get more
analytical friendly representation (b).

label are generated according to the true label. The second, Figure 3.1(b), is less intuitive

in the context of generative modelling because it looks as if the true label was originated

from the corrupted label.

As such, we proceed to treat the joint probability p(y, ỹ) according to the first graphical

model.

L(Θ) =
N
∏

n=1

K
∑

j=1

p(xn|y = j, θj)p(y = j, ỹn) (4)

=
N
∏

n=1

K
∑

j=1

p(xn|y = j, θj)p(ỹn|p = y)p(y = j) (5)

Recall that we have made an assumption that the label noise is random, i.e. it occurs

independently from the observation features. Therefore we can drop ỹ from p(xn|y, ỹ; θỹn)

using the fact that ỹn becomes conditionally independent from xn after knowing y. Since

the true label is unobservable we then marginalise the latent variable y in order to get

the data likelihood that we can work with. Notice that now we are finding parameters

associated with the true label instead of those associated with the observed label.

Further, by denoting the observed class membership vector of the nth point using the

indicator function 1(ỹn = k) we get the data log-likelihood as:

L(Θ,Γ) =
K
∑

k=1

1(ỹn = k)
N
∑

n=1

log
K
∑

j=1

p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j) (6)
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We see that we have transformed the likelihood w.r.t. the observed label into the log-

likelihood w.r.t. the true label by adding extra weighting coefficient, namely p(ỹ|y). This

is a probabilistic factor that takes into account the random label flipping process. We

define γjk
def
= p(ỹn = k|y = j) to be a probability that the label is flipped from the true

class j to the observed class k. These parameters form a label transition table which we

will refer to as the gamma table, Γ. The table is summarised in Table 3.1.

ỹ
1 2 · · · k · · · K

1 γ11 γ12 · · · γ1k · · · γ1K
2 γ21 γ22 · · · γ2k · · · γ2K
...

...
y j γj1 γj2 · · · γjk · · · γjK

...
...

K γK1 γK2 · · · γKk · · · γKK

Table 3.1: Probabilistic relationship between the observed label and the true label.

3.2 The learning algorithm

In this section we proceed to derive the learning algorithm for our rNDA. Unfortunately, it

is difficult and cumbersome to deal with logarithms of a sum as in Eq.(6). We will instead

employ the Expectation-Maximisation (EM) methodology (Dempster et al. [1977]) to

optimise the model. Following the EM algorithm, we construct a lower bound for Eq.(6)

by rewriting log
∑K

j=1 p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j) as

log
K
∑

j=1

q(y = j)
p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)

q(y = j)
(7)

where q(·) is an arbitrary probability distribution of the latent variable y. By Jensen’s

inequality (Appendix B.2) and the concavity of logarithm, we derive the lower bound of
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the above expression with

log
K
∑

j=1

q(y = j)
p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)

q(y = j)
≥

K
∑

j=1

q(y = j) log
p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)

q(y = j)
(8)

Once we have constructed the lower bound we can go a step further by finding the optimal

lower bound, which can be found by maximising Eq.(8) w.r.t. the free parameter, q(y = j).

Since q(·) is a probability we employ a Lagrange multiplier λ to enforce the constraint

that the probability sums to one, which gives us the Lagrangian.

G =
K
∑

j=1

q(y = j) log p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)

−
K
∑

j=1

q(y = j) log q(y = j) + λ{1−
K
∑

j=1

q(y = j)} (9)

Taking derivative w.r.t. q(), equating to 0, we solve for λ.

∂G
∂q(y = j)

= log
{

p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)
}

− log q(y = j)− 1− λ = 0

log q(y = j) = log
{

p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)
}

− 1− λ

q(y = j) = p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j) · e−(λ+1)

K
∑

j=1

q(y = j) =
K
∑

j=1

p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j) · e−(λ+1)

1 =
K
∑

j=1

p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j) · e−(λ+1)

λ = log
K
∑

j=1

p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)− 1 (10)
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Plugging the expression of λ into Eq.(8), and solving for q(y = j) we have

q(y = j) =
p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)

∑K
j=1 p(xn|y = j; θj)p(ỹn = k|y = j)p(y = j)

= p(y = j|xn, ỹn = k) (11)

which is essentially the posterior probability of the true label. Now plugging Eq.(11) into

Eq.(8) we get the expected complete data log-likelihood or the so-call Q function.

Q =
K
∑

k=1

1(ỹn = k)
{

N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) log p(xn|y = j; θj)

+
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) log p(ỹn = k|y = j)

+
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) log p(y = j)
}

(12)

The E-step or Expectation step consists of the calculation of the posterior distribution of

the latent variable y,

p(y = j|xn, ỹn = k) =
p(xn|y = j, θj)p(ỹn = k|y = j)p(y = j)

∑K
j=1 p(xn|y = j, θj)p(ỹn = k|y = j)p(y = j)

(13)

The M-step or Maximisation step is the optimisation of Eq.(12) w.r.t. class parameters

θj. Assuming that data was generated by a Gaussian distribution with mean µj and

covariance Σj, we will now derive the update equations for these parameters.
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3.2.1 Updating the mean

To get an update expression for the mean, we take the derivative of Eq.(12) w.r.t. µj,

equate to 0 and solve for the mean:

∂Q
∂µj

=
K
∑

k=1

1(ỹn = k)
N
∑

n=1

p(y = j|xn, ỹn = k) · 1
2
· 2Σ−1

j (xn − µj)

0 =
K
∑

k=1

1(ỹn = k)
N
∑

n=1

p(y = j|xn, ỹn = k)xn −
K
∑

k=1

1(ỹn = k)
N
∑

n=1

p(y = j|xn, ỹn = k)µj

µj =

∑K
k=1 1(ỹn = k)

∑N
n=1 p(y = j|xn, ỹn = k)xn

∑K
k=1 1(ỹn = k)

∑N
n=1 p(y = j|xn, ỹn = k)

(14)

3.2.2 Updating the covariance

Similarly for the covariance matrix, we take the derivative of Eq.(12) w.r.t. Σj, equate to

0 and solve for the covariance. An expression to update the covariance matrix turns out

to be:

∂Q
∂Σj

= −
K
∑

k=1

1(ỹn = k)
N
∑

n=1

p(y = j|xn, ỹn = k) · 1
2
Σ−1
j

+
K
∑

k=1

1(ỹn = k)
N
∑

n=1

p(y = j|xn, ỹn = k) · 1
2
·Σ−1

j (xn − µj)(xn − µj)
TΣ−1

j

Σj =

∑K
k=1 1(ỹn = k)

∑N
n=1 p(y = j|xn, ỹn = k)(xn − µj)(xn − µj)

T

∑K
k=1 1(ỹn = k)

∑N
n=1 p(y = j|xn, ỹn = k)

(15)

3.2.3 Updating the class prior

For the class prior probability, we add a Lagrange multiplier to ensure that
∑K

j=1 p(y = j) =

1. Then differentiatingQ, rearranging and solving the equation yields the update equation
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for the prior.

∂Q
∂p(y = j)

=
K
∑

k=1

1(ỹn = k)
N
∑

n=1

p(y = j|xn, ỹn = k) · 1

p(y = j)
= λ

λ
K
∑

j=1

p(y = j) =
K
∑

k=1

1(ỹn = k)
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k)

λ =
K
∑

k=1

1(ỹn = k)
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) (16)

Thus we have,

p(y = j) = πj =

∑K
k=1 1(ỹn = k)

∑N
n=1 p(y = j|xn, ỹn = k)

∑K
k=1 1(ỹn = k)

∑N
n=1

∑K
j=1 p(y = j|xn, ỹn = k)

(17)

3.2.4 Updating the label flipping probabilities

Lastly, we give the expression to update the label flipping probability. First, note that a

row in the gamma table sums to one. We then construct a Lagrangian from our Q-function

to ensure that
∑K

k=1 γjk = 1.

G =
K
∑

k=1

1(ỹn = k)
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) log p(xn|y = j; θj)

+
K
∑

k=1

1(ỹn = k)
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) log γjk − λ(1−
K
∑

k=1

γjk)

+
K
∑

k=1

1(ỹn = k)
N
∑

n=1

K
∑

j=1

p(y = j|xn, ỹn = k) log p(y = j) (18)

Taking derivative with respect to γjk, equating to 0 and solving for γjk yields update

equation for the flip probability.

∂G
∂γjk

=
N
∑

n=1

p(y = j|xn, ỹn = k)
1

γjk
− λ = 0
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N
∑

n=1

p(y = j|xn, ỹn = k) = λγjk

N
∑

n=1

K
∑

k=1

p(y = j|xn, ỹn = k) = λ
K
∑

k=1

γjk

N
∑

n=1

K
∑

k=1

p(y = j|xn, ỹn = k) = λ (19)

γjk =

∑N
n=1 p(y = j|xn, ỹn = k)

∑N
n=1

∑K
k=1 p(y = j|xn, ỹn = k)

(20)

Algorithm 1 summarises the steps to learn the multi-class robust Normal Discriminant

Analysis model.

Algorithm 1 Learning algorithm for rNDA

Input: A set of Gaussian parameters Θ = {µj=1:K , πj=1:K ,Σj=1:K}, Γ
Initialise µj ← 1

N

∑N
n=1 1(yn = j)xn

Initialise πj ← 1
N

∑N
n=1 1(yn = j)

Initialise Σj ← 1
N

∑N
n=1 1(yn = j)(xn − µj)(xn − µj)

T

while Iteration < MaxIteration do
Update µj using Eq.(14)
Update Σj using Eq.(15)
Update πj using Eq.(17)
Update Γ using Eq.(20)

end while
Output: Optimised Gaussian parameters Θ. Optimised Γ.

3.3 Classifying a novel point

We now have all the equations we need to estimate the parameters. One question left

unanswered is how are we going to classify an unseen example xq. So far what we can

calculate is the posterior probability which is conditioned on ỹn However, for an unseen

data point ỹ is unknown, and hence our formulation is not directly applicable. There are

two approaches, which turn out to be equivalent, to get the posterior probability of y.
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The first way is to omit ỹ and calculate p(y = j|xq; θj) as follows

p(y = j|xq) =
p(xq|y = j, θj)p(y = j)

∑K
j=1 p(xq|y = j, θj)p(y = j)

(21)

The second way is to start with p(y = j|xq, ỹ) and marginalising out the observed label,

ỹ.

p(y = j|xq) =
K
∑

k=1

p(y = j|xq, ỹ = k)p(ỹ = k|xq)

=
K
∑

k=1

( p(xq|y = j)p(ỹ = k|y = j)p(y = j)
∑K

i=1 p(xq|y = i)p(ỹ = k|y = i)p(y = i)

×
∑K

i=1 p(xq|y = i)p(ỹ = k|y = i)p(y = i)
∑K

l=1

∑K
i=1 p(xq|y = l)p(ỹ = i|y = l)p(y = l)

)

=
K
∑

k=1

(

p(xq|y = j)p(ỹ = k|y = j)p(y = j)
∑K

l=1

∑K
i=1 p(xq|y = l)p(ỹ = i|y = l)p(y = l)

)

=
p(xq|y = j)

∑K
k=1 p(ỹ = k|y = j)p(y = j)

∑K
l=1 p(xq|y = l)

∑K
i=1 p(ỹ = i|y = l)p(y = l)

=
p(xq|y = j)p(y = j)

∑K
l=1 p(xq|y = l)p(y = l)

(22)

where we have used,

p(ỹ = k|xq) =
p(xq|ỹ = k)p(ỹ = k)

∑K
l=1 p(xq|ỹ = l)p(ỹ = l)

=

∑K
i=1 p(xq|y = i, ỹ = k)p(ỹ = k|y = i)p(y = i)

∑K
l=1

∑K
i=1 p(xq|y = l, ỹ = i)p(ỹ = i|y = l)p(y = l)

=

∑K
i=1 p(xq|y = i)p(ỹ = l|y = i)p(y = i)

∑K
l=1

∑K
i=1 p(xq|y = l)p(ỹ = i|y = l)p(y = l)

(23)

From Eq.(21) and Eq.(22), we see that the two approaches are indeed equivalent. There-

fore, we can use either one of them to predict the label of novel query point. We decide

the class that gives maximum class posterior according to Eq.(21) or Eq.(22) to be the
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label of the query point.

3.4 Empirical evaluation

3.4.1 Datasets

We evaluated our model using three synthetic and two real-world datasets. The syn-

thetic datasets are comprised of two well-separated mixture of Gaussians and an over-

lapped mixture of Gaussians. We used class separation (Dasgupta [1999]) defined as c =

mini 6=j
∥

∥µi − µj

∥

∥ /
√

M max(λmax(Σi), λmax(Σj)), where λmax(Σ) represents the largest

eigenvalue of the covariance Σ and M is the dimensionality of the data, to quantify the

difficulty of the datasets. A 1
2
-separated mixture corresponds to highly overlapping Gaus-

sians, while a 11
2
-separated (or larger) is considered to be a well-separated mixture. For

real world data we use Iris and Wine data from the UCI repository (Frank and Asuncion

[2010]). Iris dataset introduced by Fisher [1936], is 4-dimensional data of 3 classes. The

goal is to predict of which class the flower belongs to. The UCI Wine data is also divided

into 3 classes but has higher dimensionality of 13. The objective is to predict from which

region the wine comes from. The details of each dataset are summarised in Table 3.2.

3.4.2 Results and discussion

The experiments are designed to answer the following research questions: 1) How does

label flipping affect the parameter estimates, and the class prediction performance of

Dataset C-Separation # Classes Dimensionality # Samples
Synth-1 1.5 3 2 300
Synth-2 1.0 4 6 800
Synth-3 1.5 5 10 800
Iris 0.3 3 4 150
Wine 0.35 3 13 178

Table 3.2: Characteristics of the datasets employed.
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the traditional NDA? 2) Can rNDA improve performance in terms of either or both of

these measures? 3) How does our rNDA compare with the existing model-free method of

depuration?

We start by an illustrative example where the effect that label flipping has on pa-

rameter estimates is most apparent. We injected 30% symmetric noise1 into Synth-1

dataset. Figure 3.2 shows the dataset with its true mean and covariance parameters and

the induced true decision boundary, in comparison with their estimated counterparts as

obtained by our rNDA and the traditional NDA respectively. From this result it is quite

clear that incorporating a noise model improves dramatically on the quality of parameter

estimates. Without a model of the label noise process, in turn, the estimated covariances

of NDA grow towards the noisy distribution. This can also affect the decision boundaries

and consequently degrade the classification accuracy.

Next, we present experiments that assess the classification accuracy of the methods

under study. We compared the proposed method to the Depuration (Barandela and

Gasca [2000]) algorithm which has been reported to be effective against label noise. We

also included a nearest neighbour (NN) classifier in our comparison as a baseline since

Depuration is structurally related to NN. Figure 3.3 and Figure 3.4 summarise the results

obtained. Again we artificially injected symmetric noise from 10%-50% into the datasets.

At each level of label-noise we performed 100 experiments, and plotted the mean errors

along with the standard deviation.

We observe that on Synth-2 rNDA outperforms its competitors in up to 50% noise

conditions. However in Synth-3 where dimensionality is higher, rNDA lagged behind

Depuration from 40% noise onwards. This is because rNDA has more parameters to

estimate and hence requires more training data. We then double the number of samples

in Synth-3. Figure 3.3(c) indeed shows that when there is large amount of data available

1Asymmetric noise will be discussed in Chapter 4 where we compare rNDA with robust discriminative
classifiers
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Figure 3.2: Decision boundary induced by the models at 30% noise level on Synth-1
dataset. The black ellipses are the estimated parameters.

rNDA can perform at its best. Note in both datasets that NDA was highly affected by label

noise and its classification performance degrades rapidly as contamination rate increases.

For some applications getting more data might not be feasible. In such case we can switch

to a diagonal covariance matrix where there are less parameters to be estimated. Figure

3.3(d) shows rather impressive results from rNDA with diagonal covariance. We observed

good performance from rNDA. Using diagonal covariance also alleviates the negative effect

of label noise on NDA to some extent. Still it was not as good as rNDA.

Figure 3.4 shows the results on the real datasets where the Gaussian shape of the

classes, as assumed by the model, is more unlikely to hold. Yet, rNDA still ranks in the first

place. On the figure, Depuration does occasionally outperform rNDA on theWine dataset

but these differences are marginal. We also observed that in some cases NDA performed

slightly better than rNDA at 0% noise. This is expected though, because in this case

NDA’s assumption is correct (no label flipping), while rNDA assumes nothing about the

correctness of data labels and needs to estimate more parameters, namely γjk. Depending

on many factors such as the number of training points, dimensionality of the data or search

algorithm used, finding the global optimum is not guaranteed. Thus, the results from

rNDA could be worse than those obtained from NDA. The Depuration algorithm is also

very capable. It may give better results if data distributions were not strictly Gaussians.
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(a) Synth-2 (Full)
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(b) Synth-3 (Full)
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(c) Synth-3 (Full) + more samples
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(d) Synth-3 (Diag)

Figure 3.3: Classification errors (%) on Synth-2 and Synth-3 datasets. Full denotes that
full covariance matrix is used while diagonal covariance matrix is used in Diag. The
number of data examples is doubled in Figure 3.3(c)

.

Note that, similar to the synthetic data case, we also observe some improvement on the

performance of rNDA and NDA when diagonal covariance is employed.

Moreover, we studied various factors of the data setting that have an impact on the

results. Towards quantifying these, we conducted experiments to study the effects of

the number of classes, the data dimensionality, the number of training points, and the

c-separation of the classes. From Figure 3.5(a) the performance of rNDA was nearly

unaffected by the number of classes up to 12 classes. Beyond that point Depuration

showed lower classification error. Nonetheless, we see that the benefit of the model-

based approach becomes significant as the number of classes increases. The effect of data

dimensionality is shown in Figure 3.5(b). We notice that rNDA tends to perform better
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(a) UCI Iris (Full)
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(b) UCI Iris (Diag)
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(c) UCI Wine (Full)
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(d) UCI Wine (Diag)

Figure 3.4: Classification errors (%) on real-world datasets.

in comparison with competitors when the data dimensionality is high. This is because

Gaussianity assumption is more likely to hold in high dimensional data. However, in that

case more data points are required to obtain the best performance, as seen in Figure 3.5(c).

Finally, Figure 3.5(d) shows the effect of varying the c-separation where we observed the

performance of all methods increases at roughly the same rate as the classes becomes

more clearly separated, as one might expect indeed. These results taken together imply

that rNDA will be at its best if the data is well-separated, which is obvious. The result

agrees with that from Dasgupta [1999] which stated that a 2-separated mixtures is almost

completely separated. That is beyond that value the best accuracy obtained is unlikely

to improve.
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(a) Effect of # of classes
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(b) Effect of dimensionality
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(c) Effect of # of sample size

1 2 3 4
0

10

20

30

40

50

60
CLS=4 , Dim=10 , # of samples=800

Seperation

G
e

n
e

ra
lis

a
ti
o

n
 E

rr
o

r(
%

)

 

 

(d) Effect of class separation

Figure 3.5: The effects of number of classes, data dimension, number of training points and
class separation on classification accuracy of the robust Normal Discriminant Analysis.
The experiments were performed at 30% symmetric noise.

3.5 Theoretical analysis

We now give a theoretical analysis of rNDA. In particular we are interested in the gener-

alisation error of the algorithm, and the quality of the estimated parameters. To facilitate

the analysis we shall restrict ourselves to a simpler case where the covariance matrix is

shared across all classes. The analysis presented here assumes that the data is drawn

from a class of distributions called sub-Gaussian distributions. A sub-Gaussian random

variable is a random variable where moment generating function is upper bounded by

that of the Gaussian. It covers a random variable drawn from, for example, a standard

Gaussian, Bernoulli and bounded distributions.
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Definition For a centred sub-Gaussian random variable X

∃b > 0, ∀t ∈ R, EetX ≤ eb
2t2/2 (24)

The first part of the analysis is concerned with the generalisation error bound of the

rNDA. We follow the standard method in Durrant and Kabán [2010], which was used to

analyse the performance of Fisher Discriminant Analysis. Let us assume for now that we

work with binary classification and the labels take the values from {0, 1}.

Theorem 3.5.1 Let (xq, y) ∼ D be an example drawn from a sub-Gaussian distribution.

Let µ0,µ1 be the mean of class 0 and class 1 and µ̂0, µ̂1 be their estimates, respectively.

Let Σ be a shared covariance matrix and Σ̂ be its estimate. Let π̂0 be the estimate of π0,

the prior probability of class 0. Denote an instance of two-class rNDA trained from i.i.d.

training set S by ĥ. Then the misclassification error of ĥ is bounded above by

p[ĥ(xq) 6= y] ≤ π0 exp






−1

8

{

(µ̂1 + µ̂0 − 2µ0)
T Σ̂

−1
(µ̂1 − µ̂0)− 2 log 1−π̂0

π̂0

}2

(µ̂1 − µ̂0)
T Σ̂

−1
ΣΣ̂

−1
(µ̂1 − µ̂0)







+(1− π0) exp






−1

8

{

(µ̂0 + µ̂1 − 2µ1)
T Σ̂

−1
(µ̂0 − µ̂1)− 2 log π̂0

1−π̂0

}2

(µ̂0 − µ̂1)
T Σ̂

−1
ΣΣ̂

−1
(µ̂0 − µ̂1)






(25)

Proof We begin with the equation corresponding to the decision boundary of the model.

Considering two-class classification, given a query point xq, the algorithm predicts ŷ = 1

if p(y = 1|xq) > p(y = 0|xq) and ŷ = 0 otherwise. This rule can be written as a function

as follows:

ĥ(xq) = δ

{

log
p(y = 1|xq)
p(y = 0|xq)

> 0

}

(26)

where δ(·) is a function that returns 1 if the assertion is true and 0 otherwise. Now the
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generalisation error is the probability that the algorithm gives an incorrect prediction.

Without loss of generality, considering the case where xq has label y = 0, the probability

that xq is misclassified could be written as,

p
{

ĥ(xq) 6= y|y = 0
}

= p
{

ĥ(xq) > 0
}

(27)

where the probability and the expectation are w.r.t. xq. Plugging in the definition of ĥ

we obtain,

p
{

log
p(y = 1|xq)
p(y = 0|xq)

> 0
}

= p
{

log
p(xq|y = 1)p(y = 1)

p(xq|y = 0)p(y = 0)
> 0
}

= p
{

log
1− π̂0
π̂0

+
1

2
(xq − µ̂0)

T Σ̂
−1
(xq − µ̂0)−

1

2
(xq − µ̂1)

T Σ̂
−1
(xq − µ̂1) > 0

}

= p
{

log
1− π̂0
π̂0

+ (µ̂1 − µ̂0)
T Σ̂

−1
(xq −

µ̂0 + µ̂1

2
) > 0

}

= p
{

c0 log
1− π̂0
π̂0

+ c0(µ̂1 − µ̂0)
T Σ̂

−1
(xq −

µ̂0 + µ̂1

2
) > 0

}

for all c0 > 0. Exponentiating both sides and using Markov’s inequality (Appendix B.4),

p
{

exp

(

c0 log
1− π̂0
π̂0

+ c0(µ̂1 − µ̂0)
T Σ̂

−1
(xq −

µ̂0 + µ̂1

2
)

)

> 1
}

≤Exq |y=0

{

exp

(

c0 log
1− π̂0
π̂0

+ c0(µ̂1 − µ̂0)
T Σ̂

−1
(xq −

µ̂0 + µ̂1

2
)

)

}

=exp

(

c0 log
1− π̂0
π̂0

− 1

2
c0(µ̂1 − µ̂0)

T Σ̂
−1
(µ̂0 + µ̂1)

)

× Exq |y=0

{

exp
(

c0(µ̂1 − µ̂0)
T Σ̂

−1
xq

)}

(28)

The expectation is in the form of the moment generating function (MGF) of a multivariate

Gaussian which is given by E exp(tX) = exp(tTµ + tTΣt/2). Plugging in the MGF, we
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have the probability of misclassification is bounded above by

exp(c0 log
1− π̂0
π̂0

− 1

2
c0(µ̂1 − µ̂0)

T Σ̂
−1
(µ̂0 + µ̂1) · · ·

· · ·+ µT
0 c0Σ̂

−1
(µ̂1 − µ̂0) +

1

2
(µ̂1 − µ̂0)

T c20Σ̂
−1
ΣΣ̂

−1
(µ̂1 − µ̂0)) (29)

where µ0 and Σ is the true mean and true covariance matrix of the class of xq. We can

also tighten the bound by optimising for the best c0. Because the exponential function

is monotonic increasing function, minimising its argument is sufficient for minimising the

bound. Taking derivative of the argument with respect to c0, equating to zero and solving

for c0 we have,

c0 =
(µ̂1 + µ̂0 − 2µ0)

T Σ̂
−1
(µ̂1 − µ̂0)− 2 log 1−π̂0

π̂0

2(µ̂1 − µ̂0)
T Σ̂

−1
ΣΣ̂

−1
(µ̂1 − µ̂0)

(30)

Substituting this c0 back to the bound yields the misclassification probability when xq is

from class 0 as,

exp



−1

8

[(µ̂1 + µ̂0 − 2µ0)
T Σ̂

−1
(µ̂1 − µ̂0)− 2 log 1−π̂0

π̂0
]2

(µ̂1 − µ̂0)
T Σ̂

−1
ΣΣ̂

−1
(µ̂1 − µ̂0)



 (31)

The case when xq is from class 1 can be derived similarly and gives

exp



−1

8

[(µ̂0 + µ̂1 − 2µ1)
T Σ̂

−1
(µ̂0 − µ̂1)− 2 log π̂0

1−π̂0
]2

(µ̂0 − µ̂1)
T Σ̂

−1
ΣΣ̂

−1
(µ̂0 − µ̂1)



 (32)

Using the law of total probability, we combine the two terms in Eqs.(31)-(32)and arrive

at Theorem 3.5.1, and that concludes the proof. �

Based on the technique to bound the performance of a two-class rNDA, we can also

derive the bound for a multi-class rNDA with shared covariances.

Theorem 3.5.2 Let (xq, y) ∼ D be an example drawn from a sub-Gaussian distribution.
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Let µj be the mean of class j and µ̂j be its estimates. Let Σ be a shared covariance

matrix, and Σ̂ be its estimate. Let π̂j be the estimate of πj, the prior probability of class

j. Denote an instance of a multi-class rNDA trained from i.i.d. training set S by ĥ. Then

the misclassification error of ĥ is bounded above by

p
{

ĥ(xq) 6= y
}

≤
K
∑

j=1

K
∑

k=1,k 6=j

πj exp






−1

8

{

(µ̂k + µ̂j − 2µj)
T Σ̂

−1
(µ̂k − µ̂j)− 2 log π̂k

π̂j

}2

(µ̂k − µ̂j)
T Σ̂

−1
ΣΣ̂

−1
(µ̂k − µ̂j)







(33)

Proof For the bound on multi-class problems, we use one-against-all approach where the

decision rule for class j is given by all binary decision rules against the other classes.

ĥj(xq) = δ
{

log
p(y = j|xq)
p(y = k|xq)

> 0
}

, ∀k 6= j (34)

A misclassification occurs when ĥj(·) < 0. Similar to the proof in Theorem 3.5.1 the

generalisation error bound for the case when xq is from class j is given by:

p
{

ĥ(xq) 6= y
}

≤
K
∑

k=1,k 6=j

πj exp






−1

8

{

(µ̂k + µ̂j − 2µj)
T Σ̂

−1
(µ̂k − µ̂j)− 2 log π̂k

π̂j

}2

(µ̂k − µ̂j)
T Σ̂

−1
ΣΣ̂

−1
(µ̂k − µ̂j)







(35)

Combining all the bounds of the other K−1 cases, i.e., y = i, i 6= j using the union bound

(Appendix B.3) concludes the proof. �

Theorem 3.5.2 bounds the error of rNDA conditioned on a fixed training set. However,

it is not obvious from the resulting bound why the rNDA is more robust to the label noise

than NDA. To get more insight on the relative performance between the traditional NDA

and the new rNDA, it is useful to look at the accuracy of the parameter estimates. We

have seen that the estimate of the class prior in rNDA, Eq.(17) is different from that

found in the traditional NDA and as a consequence the estimated mean and estimated
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covariance are changed during the optimisation process too. We will show that in the best

case scenario parameter estimates via rNDA model are more accurate.

Theorem 3.5.3 Let p̂nda(y) be the estimate of the true class prior by NDA, and p̂rnda(y)

be the estimate of the true class prior by the robust model. Let p(y) be the true class prior.

Assuming that the class posteriors reflect the true class memberships perfectly, then

∣

∣

∣p̂nda(y)− p(y)
∣

∣

∣ ≥
∣

∣

∣p̂rnda(y)− p(y)
∣

∣

∣ (36)

Proof We begin by bounding the l.h.s. of the bound. Let N be the number of samples

in the training set. Since NDA assumes that all the observed labels are the true labels,

we have p̂nda(y) = p̂nda(ỹ). For any class j the expression leads to:

∣

∣

∣p̂nda(ỹ = j)− p(y = j)
∣

∣

∣ =
∣

∣

∣p̂nda(ỹ = j)− p(ỹ = j) + p(ỹ = j)− p(y = j)
∣

∣

∣

=
∣

∣

∣

1

N

N
∑

n=1

1(ỹn = j)− p(ỹ = j) + p(ỹ = j)− p(y = j)
∣

∣

∣

≤
∣

∣

∣

1

N

N
∑

n=1

1(ỹn = j)− p(ỹ = j)
∣

∣

∣
+
∣

∣

∣
p(ỹ = j)− p(y = j)

∣

∣

∣
(37)

The last step is due to the triangle inequality. We then bound the first term on the r.h.s.

using Hoeffding’s inequality (Appendix B.1).

p

[

∣

∣

∣

1

N

N
∑

n=1

1(ỹn = j)− p(ỹ = j)
∣

∣

∣ > ǫ

]

≤ 2 exp(−2Nǫ2) (38)

Plugging Eq.(38) back into Eq.(37) and taking limit as the number of training samples

goes to infinity, we obtain the following

lim
N→∞

∣

∣

∣
p̂nda(ỹ = j)− p(y = j)

∣

∣

∣
≤ lim

N→∞

∣

∣

∣
2 exp(−2Nǫ2)

∣

∣

∣
+ lim

N→∞

∣

∣

∣
p(ỹ = j)− p(y = j)

∣

∣

∣
(39)

48



It it clear that when N goes to infinity the first term of the r.h.s. in Eq.(39) will go to

zero. The second term will never be zero unless 1) there is no label flipping and 2) the

flipping is uniform. In such case p(ỹ) equals p(y). This shows that a traditional NDA will

get confused with label noise and yields inaccurate prior estimates.

The second part of the proof is concerned with showing that the prior estimate from

rNDA is more accurate. First, consider the update step for the prior in Eq.(17). Assuming

that the posterior estimates reflect the true class membership, the update step can be

interpreted as dividing the number of points that have the true label j but the observed

label was k by the total number of point which is believed to have true label j. Under

the preconditions of the theorem, we could write the r.h.s. of Eq.(36) as

∣

∣

∣p̂rnda(y = j)− p(y = j)
∣

∣

∣ =

∣

∣

∣

∣

∣

1

N

N
∑

n=1

K
∑

k=1

1(yn = j, ỹn = k)1(ỹ = k)

1(ỹ = k)
− p(y = j)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

N

N
∑

n=1

K
∑

k=1

1(yn = j, ỹn = k)− p(y = j)

∣

∣

∣

∣

∣

=
∣

∣

∣

1

N

N
∑

n=1

1(yn = j)− p(y = j)
∣

∣

∣ (40)

Bounding the above equation using Hoeffding’s bound we have

p

[

∣

∣

∣

1

N

N
∑

n=1

1(yn = j)− p(y = j)
∣

∣

∣ ≤ ǫ

]

≥ 1− 2 exp(−2Nǫ2) (41)

Now as N approaches infinity p̂(y) converges to its expectation and hence their difference

approaches zero. Referring back to the main theorem we see that the prior estimate of

rNDA is more accurate and this concludes the proof. �

The above theorem shows that having a label noise model improves prior estimates.

As a consequence the decision boundary is shifted towards the optimal one. We can

further bound the probability that the estimated means and estimated covariances are
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close to their expectation using a similar technique. We shall start with the means.

Theorem 3.5.4 Consider a training set S drawn from a sub-Gaussian distribution in

R
M with covariance matrix Σ. Let µ̂j be the estimated mean µj be the true mean of

class j. Assume further that all classes share the same covariance matrix and denote its

diagonal element by σ2
j . Then,

p
[

‖µ̂j − µj‖1 < ǫ
]

≥ 1− 2M exp(− njǫ
2

2M2σ2
j

)

Proof The proof begins by bounding each component µ̂ij of µ̂j individually. Now we

would like to say that the probability

p{|µ̂ij − µij| < ǫ0} (42)

is high. We shall start by bounding the negation of the above for one of the two cases of

the absolute value function. We write:

p{µ̂ij − µij > ǫ0} = p{exp (c0(µ̂ij − µij)) > exp(c0ǫ0)}

≤ exp(−c0ǫ0) · Eµ[exp (c0(µ̂ij − µij))]

≤ exp(−c0ǫ0) · exp(
1

2
c20
σ2
j

nj
)

= exp(−c0ǫ0 +
1

2
c20
σ2
j

nj
) (43)

The first step comes from the use of Laplace transformation. Then Markov’s inequality

(Appendix B.4) is used to upper bound the expression. Finally we bound the expectation

term with the moment generating function of the Gaussian. The Gaussianity comes from

the fact that, if the data classes were Gaussian, then the mean estimate is distributed

according to a Gaussian distribution with mean µij and covariance σ2
j/nj . That is µ̂ij −
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µij ∼ N(0, σ2
j/nj). When the data classes are sub-Gaussian, the mean estimates will be

sub-Gaussian too, i.e., linear combination of sub-Gaussians is a sub-Gaussian (Vershynin

[2010]). To tighten the bound we can optimise for the best c0. Since the exponential

function is monotonically increasing, optimising the function is equivalent to optimising

its argument. Taking the derivative of the argument in the exponential w.r.t. c0, we have

c0 =
ǫ0nj
σ2
j

(44)

Substituting the optimal c0 back into the bound we get,

p{µ̂ij − µij > ǫ0} ≤ exp(−ǫ
2
0nj
2σ2

j

) (45)

Bounding the other case of the absolute value function, we have

p{µ̂ij − µij < −ǫ0} ≤ exp(−ǫ
2
0nj
2σ2

j

) (46)

Now, combining the two bounds from Eq.(45) and Eq.(46), by the union bound we have,

p{|µ̂ij − µij| > ǫ0} ≤ 2 exp(−ǫ
2
0nj
2σ2

j

) (47)

Using the union bound to take into account all of the components of the mean we finally

arrive at,

p{‖µ̂j − µj‖1 > Mǫ0} ≤ 2M exp(−ǫ
2
0nj
2σ2

j

) (48)

Or equivalently,

p{‖µ̂j − µj‖1 < Mǫ0} ≤ 1− 2M exp(−ǫ
2
0nj
2σ2

j

) (49)

We conclude the proof by substituting ǫ =Mǫ0 into the resulting bound. �
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Next we will try to bound the probability that the covariance estimation will be

accurate. We borrow the technique from random matrix analysis. The collection of the

data points xn, n = 1 : N forms an N×M random matrix, whereM is the dimensionality

of data and each row represents an independent random sample point. The empirical

covariance estimate is in the form

Σ̂ =
1

N

N
∑

n=1

(xn − µ)(xn − µ)T (50)

Now it follows from the law of large numbers (Vershynin [2010]) that

lim
N→∞

‖Σ̂−Σ‖ → 0 (51)

where, ‖ · ‖ is the operator norm, i.e., largest eigenvalue of the argument. In other

words, the empirical covariance estimate converges asymptotically to its expectation (true

covariance) if we have infinitely many data points. However in real life we can not hope for

that to be true. In fact in many classification tasks the number of data points available

is very limited and obtaining more data is financially, practically expensive. For that

reason a non-asymptotic analysis is required. Basically, we would like to know how large

N should be for accurate estimation such that ‖Σ̂−Σ‖ ≤ ǫ‖Σ‖.

To do so, we make use of the following covariance estimation result for sub-Gaussian

distributions from Vershynin [2010]. The result is based on a definition of sub-Gaussian

from Vershynin [2010] that is slightly different from the definition we have used earlier.

Definition For a centred sub-Gaussian random variable X

E exp(tX) ≤ exp
(

Ct2‖X‖2ψ2

)

∀t ∈ R (52)

where C > 0 are absolute constants, and ‖X‖ψ2 = supp≥1 p
−1/2(E|X|p)1/p.
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Lemma 3.5.5 (Vershynin [2010]) Consider a sub-Gaussian distribution in R
M with

covariance matrix Σ, and let ǫ ∈ (0, 1), t ≥ 1. If N ≥ c(t/ǫ)2M then with probability at

least 1− 2 exp(−t2M) one has

‖Σ̂−Σ‖ ≤ ǫ‖Σ‖ (53)

where the constant c depends only on the sub-Gaussian norm of the distribution, and ‖ · ‖

denotes the operator norm.

The above lemma shows that a dataset size of N = O(M) suffices for accurate covariance

estimation of sub-Gaussian distributions. The lemma is readily applicable to our analysis.

Since we assume that the data points are drawn from a mixture of Gaussians with shared

covariance, we have:

Theorem 3.5.6 Consider a sub-Gaussian distribution in R
M . Let Σ be a shared covari-

ance matrix and Σ̂ be its estimate. Let N be the number of points in the dataset. Let

ǫ ∈ (0, 1). Assuming that the class posteriors reflect the true class memberships perfectly,

then

p
[

‖Σ̂−Σ‖ ≤ ǫ‖Σ‖
]

≥ 1− 2 exp(−ǫ2N/c) (54)

where ‖ · ‖ denotes the operator norm.

Proof The proof begins by considering the update equation of the covariance, Eq.(15),

for a shared covariance case, which is

Σ̂ =

∑K
j=1

∑N
n=1 p(y = j|xn, ỹ)(xn − µj)(xn − µj)

T

∑K
j=1

∑N
n=1 p(y = j|xn, ỹ)

(55)

Now as we assume that the posterior probability reflects class membership perfectly the

above expression can be rewritten as

Σ̂ =

∑K
j=1

∑N
n=1 1(y = j)(xn − µj)(xn − µj)

T

∑K
j=1

∑N
n=1 1(y = j)

(56)
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Now, note that the denominator is again the total number of points, we have

Σ̂ =

∑K
j=1

∑N
n=1 1(y = j)(xn − µj)(xn − µj)

T

N
(57)

which is the empirical covariance estimate. We apply Lemma 3.5.5 and conclude the

proof. �

3.6 Summary

We presented a generative multi-class classifier for learning with labelling errors. We

built this as an extension of quadratic normal discriminant analysis by including a model

of the labelling error process. Empirical results on both synthetic datasets and real-

world datasets demonstrate that the robust model indeed outperforms the traditional

generative approach in terms of parameters estimation, and its classification performance

is also significantly enhanced. Preliminary theoretical analyses further confirm that the

generalisation error of the robust model is bounded and that parameter estimates obtained

from the robust model will be more accurate than those obtained from the classical model.
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CHAPTER 4

Robust Logistic Regression

In the previous chapter we investigated a way to robustify normal discriminant analysis,

which is a generative classifier. In this chapter we shall consider another famous paradigm

in classification: the discriminative approach. We incorporate a probabilistic label noise

process into logistic regression and multinomial logistic regression and develop an efficient

learning algorithm, together with a proof of its convergence. The new algorithm will learn

the classifier jointly with estimating the label flipping probabilities. The second part of

this chapter presents some theoretical analysis of the new model. By decomposing and

rewriting the model’s objective we give a new interpretation by which we can understand

its ability to counteract the negative effect of mislabelling as a result of an intrinsic

re-weighting mechanism. Empirical results demonstrate that the new robust model is

effective against labelling errors.

4.1 The model

Consider a set of training data S = {(xn, ỹn)}Nn=1, where xn ∈ R
M and ỹn ∈ {0, 1},

where ỹn denotes the observed (possibly noisy) label of xn. In contrast to the generative

approach, discriminative classifiers do not model the distribution of the data but instead
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they model the posterior probability directly using a parametrised function. The most

widely used function for modelling the posterior is the logistic ‘sigmoid’ function in which

case the posterior for class 1 is defined as:

p(y = 1|x,w) = σ(wTx) =
1

1 + e(−wTx)
(1)

In the classical scenario for binary classification, the log likelihood is defined as:

L(w) =
N
∑

n=1

ỹn log p(ỹn = 1|xn,w) + (1− ỹn) log p(ỹn = 0|xn,w) (2)

where w is the model’s parameter representing a vector orthogonal to the decision bound-

ary and it determines the orientation of the separating plane. If all the labels were pre-

sumed to be correct, we would have p(ỹ = 1|xn,w) = σ(wTxn) =
1

1+e(−w
T
xn)

and whenever

this is above 0.5 we would decide that xn belongs to class 1 and otherwise to class 0. How-

ever, when label noise is present, making predictions in this way is no longer valid. Instead

we will introduce a latent variable y, to represent the true label, and we model p(ỹ|x,w)

as the following:

p(ỹn = k|xn,w) =
1
∑

j=0

p(ỹn = k|y = j)p(y = j|xn,w)
def
= P̃ k

n (3)

where k ∈ {0, 1}. Therefore, instead of Eq.(2), we define the log likelihood of our model

to be:

L(w,Γ) =
N
∑

n=1

ỹn log P̃
1
n + (1− ỹn) log P̃ 0

n (4)

and this is our objective function that needs to be optimised. The graphical representation

of this model is given in Figure 4.1. In Eq.(3), p(ỹ = k|y = j)
def
= γjk represents the

probability that the label has flipped from the true label j into the observed label k. These

parameters form a label transition table that we will refer to as the gamma table, Γ. For
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y ~yx

Figure 4.1: Schematic plate diagram of the proposed model. x and ỹ are observed variables
while the true label y is a hidden variable.

binary classification problem the gamma table is summarised in Table 4.1. To classify

a novel data point xq, we predict that ŷq = 1 whenever p(y = 1|xq,w) = σ(wTxq) =

1

1+e(−w
T
xq)

returns a value greater than 0.5, and ŷq = 0 otherwise. Note that the sigmoid

is now calculated from w w.r.t. the true label.

ỹ
0 1

y 0 γ00 γ01
1 γ10 γ11

Table 4.1: Probabilistic relationship between observed label and true label.

Discriminative classifiers are often criticised for lack of explanatory information to

accompany their predictions. In our case, however, by the model construction, we are able

to directly compute, for an observation (xn, ỹn), the probability of it being misclassified,

as the following:

p(ŷ 6= ỹn|xn,w) =
K
∑

j=1,j 6=ỹn

p(y = j|xn,w) (5)

This can be thought of as the models “degree of belief” that xn’s label is incorrect. We

may use it either in this form, or in a hard-thresholded form (i.e. predict that the point

xn is mislabelled if p(ŷ 6= ỹn|xn,w) > 0.5).

4.2 The learning algorithm

Learning the rLR requires us to estimate the weight vector w as well as the label-flipping

probabilities γjk.
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4.2.1 Updating the weight vector

To optimise the weight vector, we can use any non-linear optimiser. Here we decided

to employ conjugate gradients (CG) because of its well known computational efficiency,

which basically performs the Newton update step along the direction

u = g− uoldβ (6)

where g is the gradient of the robust objective w.r.t. the weight vector, and uold is

the direction of the previous step. The parameter β that works best in practice can be

obtained from the Hestenes-Stiefel formula,

β =
gT (g− gold)

(uold)T (g− gold)
(7)

To derive grlr we take derivative of Eq.(4) w.r.t. w.

grlr = ∇w

N
∑

n=1

ỹn log P̃
1
n + (1− ỹn) log P̃ 0

n

=
N
∑

n=1

ỹn∇wP̃
1
n

P̃ 1
n

+
(1− ỹn)∇wP̃

0
n

P̃ 0
n

=
N
∑

n=1

( ỹn(γ11 − γ01)
P̃ 1
n

+
(1− ỹn)(γ10 − γ00)

P̃ 0
n

)

σ(wTxn)(1− σ(wTxn))xn (8)

Here ∇wP̃
0
n are found by first expanding the terms in the summation of Eq.(3)

P̃ 0
n = p(ỹ = 0|xn,w)

= p(ỹ = 0|y = 0)p(y = 0|xn,w) + p(ỹ = 0|y = 1)p(y = 1|xn,w)

= γ00(1− σ(wTxn)) + γ10σ(w
Txn) (9)
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and taking the derivative:

∇wP̃
0
n = −γ00∇wσ(w

Txn) + γ10∇wσ(w
Txn)

= (γ10 − γ00)σ(wTxn)(1− σ(wTxn))xn (10)

Similarly, for ∇wP̃
1
n :

∇wP̃
1
n = −γ01∇wσ(w

Txn) + γ11∇wσ(w
Txn)

= (γ11 − γ01)σ(wTxn)(1− σ(wTxn))xn (11)

Having grlr, the update equation for w is then simply the following:

wnew = wold − ηu, (12)

where η is the learning rate. One may verify that setting γ01 and γ10 to 0 and γ00, γ11 to 1

and after some algebra, the gradient of the robust logistic regression in Eq.(8) will reduce

to the well-known gradient expression of the classical logistic regression.

glr =
N
∑

n=1

(ỹ − σ(wTxn)) · xn (13)

4.2.2 Updating the label flipping probabilities

Now, what remains is the update method for the label-flipping probabilities. To obtain the

updates for the label-flipping probabilities, we introduce Lagrange multipliers to ensure

that γ00 + γ01 = 1 and γ10 + γ11 = 1. In the following we will derive multiplicative fixed

point update equations for these parameters. We first introduce Lagrange multipliers to
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ensure that the row of the gamma table sums to 1.

L(w,Γ) =
N
∑

n=1

ỹn log P̃
1
n + (1− ỹn) log P̃ 0

n + λ(1− γ00 − γ01) (14)

To determine the Lagrange multiplier, we take derivative of Eq.(14) w.r.t. γ00, and equate

to 0

∂L(w,Γ)
∂γ00

=
N
∑

n=1

(

ỹn

P̃ 1
n

∂P̃ 1
n

∂γ00
+

(1− ỹn)
P̃ 0
n

∂P̃ 0
n

∂γ00

)

− λ = 0

λ =
N
∑

n=1

(1− ỹn)
P̃ 0
n

(1− σ(wTxn))

λγ00 = γ00

N
∑

n=1

(1− ỹn)
P̃ 0
n

(1− σ(wTxn)) (15)

Likewise for γ01

∂L(w,Γ)
∂γ01

=
N
∑

n=1

(

ỹn

P̃ 1
n

∂P̃ 1
n

∂γ01
+

(1− ỹn)
P̃ 0
n

∂P̃ 0
n

∂γ01

)

− λ = 0

λ =
N
∑

n=1

ỹn

P̃ 1
n

(1− σ(wTxn))

λγ01 = γ01

N
∑

n=1

ỹn

P̃ 1
n

(1− σ(wTxn)) (16)

Summing (15) and (16) and using the definition γ00 + γ01 = 1, yields:

λγ00 + λγ01 = γ00

N
∑

n=1

[

(1− ỹn)
P̃ 0
n

(1− σ(wTxn))

]

+ γ01

N
∑

n=1

[

ỹn

P̃ 1
n

(1− σ(wTxn))

]

λ(γ00 + γ01) = γ00

N
∑

n=1

[

(1− ỹn)
P̃ 0
n

(1− σ(wTxn))

]

+ γ01

N
∑

n=1

[

ỹn

P̃ 1
n

(1− σ(wTxn))

]

λ = γ00

N
∑

n=1

[

(1− ỹn)
P̃ 0
n

(1− σ(wTxn))

]

+ γ01

N
∑

n=1

[

ỹn

P̃ 1
n

(1− σ(wTxn))

]

(17)
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Substitute (14) back into (15) and (16) and get,

γ00 =
γ00
∑N

n=1

[

(1−ỹn)

P̃ 0
n

(1− σ(wTxn))
]

γ00
∑N

n=1

[

(1−ỹn)

P̃ 0
n

(1− σ(wTxn))
]

+ γ01
∑N

n=1

[

ỹn
P̃ 1
n

(1− σ(wTxn))
] (18)

γ01 =
γ01
∑N

n=1

[

ỹn
P̃ 1
n

(1− σ(wTxn))
]

γ00
∑N

n=1

[

(1−ỹn)

P̃ 0
n

(1− σ(wTxn))
]

+ γ01
∑N

n=1

[

ỹn
P̃ 1
n

(1− σ(wTxn))
] . (19)

Repeat the above steps for γ10 and γ11 we have the updates

γ10 =
γ10
∑N

n=1

[

(1−ỹn)

P̃ 0
n

σ(wTxn)
]

γ10
∑N

n=1

[

(1−ỹn)

P̃ 0
n

σ(wTxn)
]

+ γ11
∑N

n=1

[

ỹn
P̃ 1
n

σ(wTxn)
] (20)

γ11 =
γ11
∑N

n=1

[

ỹn
P̃ 1
n

σ(wTxn)
]

γ10
∑N

n=1

[

(1−ỹn)

P̃ 0
n

σ(wTxn)
]

+ γ11
∑N

n=1

[

ỹn
P̃ 1
n

σ(wTxn)
] . (21)

Algorithm 2 summarises the steps to learn our novel “robust Logistic Regression”

(rLR) model.

Algorithm 2 Optimisation of rLR
Input: Γ
Initialise w← 0
while Iteration < MaxIteration do
Update w using the gradient given in Eq.(8)
Update Γ using Eq.(18) and Eq.(20)

end while
Output: Optimised weight vector, w. Optimised Γ.

4.3 Extension to multi-class problem

It is both useful and straightforward to generalise the two-class rLR of the previous section

to multi-class problems. Assuming that k ∈ {1 . . . K}, and again introducing the true
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class label y as a latent variable, we write the posterior probability of class k:

p(ỹn = k|xn,wk) =
K
∑

j=1

p(ỹ = k|y = j)p(y = j|xn,wj)
def
= P̃ k

n (22)

The posterior probability of the latent variable is modelled using a softmax function

(Böhning [1992]),

p(y = k|xn,wk) =
e(w

T
k
xn)

∑K
l=1 e

(wT
l
xn)

(23)

where wk is the weight vector corresponding to class k. The table of label-flipping prob-

abilities is also extended to K classes as the following:

ỹ
1 2 · · · k · · · K

1 γ11 γ12 · · · γ1k · · · γ1K
2 γ21 γ22 · · · γ2k · · · γ2K
...

...
y j γj1 γj2 · · · γjk · · · γjK

...
...

K γK1 γK2 · · · γKk · · · γKK

Table 4.2: Probabilistic relationship between observed label and true label (multi-class).

The maximum likelihood (ML) estimate of wk is obtained by maximising the data

log-likelihood,

L(wc=1:K ,Γ) =
N
∑

n=1

K
∑

k=1

1(ỹn = k) log P̃ k
n (24)

where 1(·) is the indicator function that gives the value 1 when its argument is true

and the value 0 otherwise. The optimisation is again accomplished using the conjugate

gradient method. The gradient of the multi-class objective function Eq.(24) w.r.t. wc

turns out to be

gcrmlr =
N
∑

n=1

K
∑

k=1

1(ỹn = k)

P̃ k
n

∇wc
P̃ k
n
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=
N
∑

n=1

K
∑

k=1

1(ỹn = k)

P̃ k
n

e(w
T
c xn)xn

(

∑K
j=1(γck − γjk) · e(w

T
j xn)

)

(

∑K
l=1 e

(wT
l
xn)
)2 (25)

where

∇wc
P̃ k
n = ∇wc

[

K
∑

j=1

γjk
e(w

T
j xn)

∑K
l=1 e

(wT
l
xn)

]

= ∇wc

[

γ1k
e(w

T
1 xn)

∑K
l=1 e

(wT
l
xn)

+ ·+ γck
e(w

T
c xn)

∑K
l=1 e

(wT
l
xn)

+ ·+ γKk
e(w

T
K
xn)

∑K
l=1 e

(wT
l
xn)

]

=
γcke

(wT
c xn)xn

[

∑K
l=1 e

(wT
l
xn) − e(wT

c xn)
]

(

∑K
l=1 e

(wT
l
xn)
)2 −

e(w
T
c xn)xn

(

∑K
j=1,j 6=c γjke

(wT
j xn)

)

(

∑K
l=1 e

(wT
l
xn)
)2

=
e(w

T
c xn)xn

(

∑K
j=1,j 6=c γcke

(wT
j xn)

)

− e(wT
c xn)xn

(

∑K
j=1,j 6=c γjke

(wT
j xn)

)

(

∑K
l=1 e

(wT
l
xn)
)2

=
e(w

T
c xn)xn

(

∑K
j=1,j 6=c(γck − γjk)e(w

T
j xn)

)

(

∑K
l=1 e

(wT
l
xn)
)2

=
e(w

T
c xn)xn

(

∑K
j=1(γck − γjk)e(w

T
j xn)

)

(

∑K
l=1 e

(wT
l
xn)
)2 (26)

Further, the estimates of γjk in the gamma matrix again can be obtained by efficient

multiplicative update equations. We first introduce the Lagrangian that enforces the row

of the gamma table to sum to unity.

L(wc=1:K ,Γ) =
N
∑

n=1

K
∑

k=1

1(ỹn = k) log P̃ k
n + λ(1−

K
∑

k=1

γjk) (27)

Now finding the value of the Lagrange multiplier we take the derivative of Eq.(27) and
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equate to zero.

∂L(w)

∂γjk
=

N
∑

n=1

K
∑

c=1

1(ỹn = c)
∂ log P̃ c

n

∂γjk
+
∂λ(1−∑K

k=1 γjk)

∂γjk

=
N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K
l=1 e

(wT
l
xn)
− λ = 0 (28)

We now multiply both sides by γjk and use the fact that
∑K

k=1 γjk = 1,

γjkλ = γjk

N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K
l=1 e

(wT
l
xn)

K
∑

k=1

γjkλ =
K
∑

k=1

γjk

N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K
l=1 e

(wT
l
xn)

λ =
K
∑

k=1

γjk

N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K
l=1 e

(wT
l
xn)

(29)

Substitute λ back to find update equation for γjk:

γjk =
1

C
× γjk

N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K
l=1 e

(wT
l
xn)

(30)

where the constant term C equals

K
∑

k=1

γjk

N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K
l=1 e

(wT
l
xn)

(31)

To classify a new point,xq, we decide

ŷq = argmax
k

e(w
T
k
xq)

∑K
l=1 e

(wT
l
xq)

(32)

Algorithm 3 summarises the steps to learn our novel “robust Multinomial Logistic

Regression” (rMLR) model.
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Algorithm 3 Optimisation of rMLR
Input: Γ
Initialise wc=1:K ← 0
while Iteration < MaxIteration do
For each class c, update wc using the gradient given in Eq.(25)
Update Γ using Eq.(30)

end while
Output: Optimised set of weight vectors, wc=1:K . Optimised Γ.

4.4 Theoretical analysis

4.4.1 Convergence of the algorithm

We shall now prove that the learning algorithms proposed in the previous sections, for

both rLR and rmLR, converge. The proof is for the multi-class algorithm which also covers

the binary-class algorithm as well. The idea of the proof is to show that the objective

function being optimised, Eq.(24) is nondecreasing under any of our parameter updates.

Indeed, the maximisation w.r.t. the weight vector w by the conjugate gradient method

(CG) enjoys the known property of CG to provide monotonically improving estimation of

the target (Hestenes and Stiefel [1952]), which guarantees that an objective function being

maximised is nondecreasing. Now, it remains to prove that our multiplicative updates for

γjk are also guaranteed to be nondecreasing. To do this, we use the notion of an auxiliary

function, in a similar spirit to the proofs in Lee and Seung [2001].

Definition G(h, h′) is an auxiliary function for F (h) if

G(h, h′) ≤ F (h), and G(h, h) = F (h) (33)

are satisfied.

The definition is useful because of the following lemma.
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Lemma 4.4.1 (Lee and Seung [2001]) If G is an auxiliary function, then F is non-

decreasing under the update

hi+1 = argmax
h

G(h, hi) (34)

Proof F (hi+1) ≥ G(hi+i, hi) ≥ G(hi, hi) = F (hi)

We will show that by defining an appropriate auxiliary function to the objective function

Eq.(24), regarded as a function of Γ, the update equations Eq.(30) for γjk are guaranteed

to converge to a local optimum.

Lemma 4.4.2 Define

G(Γ, Γ̃) =
N
∑

n=1

K
∑

k=1

1(ỹn = k)
K
∑

j=1

γ̃jkp(y = j|xn,w)
∑K

l=1 γ̃lkp(y = l|xn,w)
×

(

log γjkp(y = j|xn,w)− log
γ̃jkp(y = j|xn,w)

∑K
l=1 γ̃lkp(y = l|xn,w)

)

(35)

This is an auxiliary function for

L(Γ) =
N
∑

n=1

K
∑

k=1

1(ỹn = k) log
K
∑

j=1

γjkp(y = j|xn,w) (36)

Proof For G(Γ, Γ̃) to be an auxiliary function it needs to satisfy the aforementioned con-

ditions. It is straightforward to verify that G(Γ,Γ) = L(Γ). To show that G(Γi+1,Γi) ≤

L(Γi+1), we observe that:

log
K
∑

j=1

γjkp(y = j|xn,w) ≥
K
∑

j=1

αjk log

(

γjkp(y = j|xn,w)

αjk

)

, (37)

by Jensen’s inequality (Appendix B.2) and due to the concavity of the logarithm. This
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inequality is valid for all non-negative αjk that sum to one. Setting

αjk =
γ̃jkp(y = j|xn,w)

∑K
l=1 γ̃lkp(y = l|xn,w)

, (38)

we see that our objective function L(Γ) is always greater than or equal to the auxiliary

function in Eq.(35).

Lemma 4.4.3 The multiplicative update rule of the label flipping probability γjk given in

Eq.(30) is guaranteed to converge.

Proof The maximum of G(Γ, Γ̃) with respect to γjk is found by setting the derivative to

zero:

dG(Γ, Γ̃)

dγjk
=

N
∑

n=1

1(ỹn = k)
αjk
γjk
− λ = 0 (39)

Using the fact that
∑

k γjk = 1, we obtain the value of the Lagrange multiplier λ. Putting

it back into Eq. (39) we arrive at:

γjk =
1

C
× γ̃jk

N
∑

n=1

1(ỹn = k)
p(y = j|xn,w)

∑K
l=1 γ̃lkp(y = l|xn,w)

(40)

where C equals
∑K

k=1 γ̃jk
∑N

n=1 1(ỹn = k) p(y=j|xn,w)
∑K

l=1 γ̃lkp(y=l|xn,w)
. Writing out posterior proba-

bility p(y = j|xn,w) as a softmax function and noting that by definition
∑K

l=1 γ̃lkp(y = l|xn,w) equals P̃ k
n , Eq.(40) then takes the same form as the update rule

in Eq.(30). Since G(Γ, Γ̃) is an auxiliary function, it is guaranteed that the value of L is

nondecreasing under this update.

Theorem 4.4.4 By alternating between the updates of the weight vector w while the

matrix Γ is held fixed, and the updates of the elements of Γ while w is fixed, the objective

function of rmLR is nondecreasing and is thus guaranteed to converge.
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Proof The proof follows directly from the fact that optimising w using CG is mono-

tonically nondecreasing and from Lemma 4.4.3, that optimising Γ is also nondecreasing.

Consequently, the objective function being optimised is monotonically increasing under

alternating these iterations.

4.4.2 Connection to EM based optimisation

As an alternative to the above gradient-based learning approach, the algorithm developed

in Raykar et al. [2010] in the context of multiple sets of noisy labels could also be instan-

tiated for our problem. The method in Raykar et al. [2010] proposes an EM algorithm

to learn a similar model where the true label is modelled as a hidden variable. Instead,

we had these hidden variable integrated out when optimising the parameters. It is hence

interesting to see how these two algorithms compare.

Similar to Raykar et al. [2010], let yn be the hidden true labels, and denote Pn :=

p(yn = 1|x,w, ỹn) the posteriors of these. To make the link, the expected complete log

likelihood (so-called Q-function) in the data space can then be written as:

Q(Θ) =
N
∑

n=1

Pn log(γ
ỹn
11 γ

1−ỹn
10 σ(wTxn)) + (1− Pn) log(γ ỹn01 γ1−ỹn00 (1− σ(wTxn))) (41)

• The E-step involves updating Pn based on the given data and the current estimate

of Θ:

Pn =
γ ỹn11 γ

1−ỹn
10 σ(wTxn)

γ ỹn11 γ
1−ỹn
10 σ(wTxn) + γ ỹn01 γ

1−ỹn
00 (1− σ(wTxn))

(42)

• The M-step then re-estimates the parameters using Pn from the E-step. For example

the gradient for updating the weight vector is given by:

g =
N
∑

n=1

(

Pn − σ(wTxn)
)

xn (43)
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Likewise, γ11 is updated using:

γ11 =

∑N
n=1 Pnỹn
∑N

n=1 Pn
(44)

Now observe that substituting Eq.(42) into Eq.(44), we recover our multiplicative form of

updates for γ11 — with one subtle but important difference: In the EM approach, Pn used

in Eq.(44) is computed with the old values of the parameters. Instead, our multiplicative

updates use the latest fresh values of all the parameters they depend on. This not only

implies that our algorithm saves the storage cost of the posteriors Pn during the iterations,

but it also has a better chance to converge in fewer iterations. The latter can be seen by

noting that our algorithm is equivalent to a component-wise EM (Celeux et al. [2001]),

that is an EM in which each component in the parameter space Θ = {w,Γ} is updated

sequentially. Component-wise EM has indeed been observed empirically to converge faster

than standard EM (Celeux et al. [2001]). We should of course note also that Pn can be

useful for interpretation and our algorithm does not compute this explicitly during its

iterations. However we can compute Pn after convergence using the final values of the

parameters.

4.4.3 Interpretation of rLR

We have seen from the last section that rLR makes use of a latent variable y to model the

true label. However, it is not obvious why the introduction of this extra variable will lead

to a more robust model. In this section we give an intuitive explanation for why this is

indeed the case. To facilitate the analysis we shall consider the gradient descent update

rule, in which the update for the j-th iteration is defined as:

wj = wj−1 − η × g (45)
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where η is usually referred to as ‘learning rate’ and g = ∇wL is the gradient of the data

log-likelihood function.

Assume a fixed training set S of size N , and assume also that the gamma matrix is

known. Let N1 be the number of points that have been assigned the label ỹ = 1 and N0

the number of points with ỹ = 0. Denote by g+ the terms of the gradient that correspond

to points with ỹ = 1, and g− those of points with ỹ = 0, so that g = g++g−. For classical

logistic regression without label noise modelling, these terms are:

g+
LR =

∂
∑N

n=1 ỹn log(
1

1+e−w
T
xn
)

∂w
=

N1
∑

n=1

p(y = 0|xn,w)x (46)

g−
LR =

∂
∑N

n=1(1− ỹn) log( e−w
T
xn

1+e−w
T
xn
)

∂w
=

N0
∑

n=1

−p(y = 1|xn,w)xn (47)

Let us now look at the corresponding two terms of the gradient for our robust logistic

regression. From the definition of data likelihood we get:

g+
rLR =

N1
∑

n=1

ỹn(γ11 − γ01)
P̃ 1
n

σ(wTxn)(1− σ(wTxn))xn (48)

Now, defining αn = (γ11−γ01)p(y=1|xn,w)
p(ỹn=1|xn,w)

, we can rewrite this as:

g+
rLR =

N
∑

n=1

αnp(y = 0|xn,w)xn (49)

Likewise, defining βn = (γ00−γ10)p(y=0|xn,w)
p(ỹn=0|xn,w)

, we find:

g−
rLR =

N0
∑

n=1

−βnp(y = 1|xn,w)xn (50)

We see that αn and βn act as weighting parameters. This weighting mechanism adjusts

the contribution that particular data points make to the gradient. The weight itself, for
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example αn is composed of two components, the first is a global weight: (γ11 − γ01), the

second is a data point specific weight: p(y = 1|wn,w)/P̃ 1
n . That is, each data point within

a class will be weighted equally by the global weight, in accordance with the extent of

label noise in that class. In addition, the individual points that have been potentially

mislabelled are multiplied by the data-point-specific weight factor. Thus, g+
rLR will take

the incorrect information into account to a lesser extent. Similar reasoning applies to

g−
rLRin a symmetric manner. Through this weighting mechanism, rLR is then able to

distinguish between correctly labelled points and mislabelled points. As a consequence,

it is expected that rLR will perform better in terms of generalisation error in label noise

conditions, and will be able to detect mislabelled instances with high accuracy.

Finally, let us look at the behaviour of robust logistic regression in a label-noise free

scenario, i.e. when the training labels are actually all correct. In this case ỹ = y, γ01 = 0

and γ11 = 1. In consequence αm = 1, and likewise βm = 1. Hence is this case we recover

g+
LR = g+

rLR and g−
LR = g−

rLR as in classical logistic regression.

4.4.4 Error analysis

In this section a bound on generalisation error in predicting given labels ỹ is derived. There

is no framework to bound the expected loss of predicting the true labels, because the true

labels are latent even in the training set. However, using our model architecture, we can

analyse performance in terms of the expected loss of predicting the observed labels through

the model. Such analysis is informative for two reasons. Firstly, it is a generalisation error

bound in predicting y when there is no mislabelling, i.e. ỹ = y. Secondly, it quantifies

how well the model that includes the latent variable for the true labels explains the

observed data. We obtain the bound by means of Rademacher complexity. Let l(h,x, y)

denote the loss of a classifier (or hypothesis) h ∈ H on the input point x, where H is

the hypothesis class considered. Define LD(h) = E(x,y)∼Dl(h,x, y) to be the generalisation
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error, and LS(h) = (1/N)·∑N
n=1 l(h,xn, yn) to be its empirical estimate. The Rademacher

complexity of the composite function of the hypothesis class H and a training set S is

defined as:

R(H ◦ S) = 1

N
E

σ∼{±1}N

[

sup
h∈H

N
∑

n=1

σnh(xn)

]

(51)

Obtaining the Rademacher complexity of a classifier is useful because the following lemma

gives an upper bound on the generalisation error of an Empirical Risk Minimisation

(ERM) classifier in terms of its Rademacher complexity.

Lemma 4.4.5 (Bartlett and Mendelson [2003]) For a training set S of size N , let

hs be an ERM hypothesis, hs ∈ argmin
h∈H

LS(h). Assume that for all x ∈ S and h ∈ H we

have the ρ-Lipschitz loss function l satisfying |l(h,x, y)| ≤ c for some positive constant c.

Then, with probability at least 1− δ

LD(hS)− LS(hS) ≤ 2ρR(H ◦ S) + c

√

log(1/δ)

2N
(52)

To apply this lemma, we first define the loss function l(h,x, y) associated with rLR that

we will show to be Lipschitz 1. We then calculate the Rademacher complexity of the

hypothesis class of rLR. Finally the generalisation error bound is obtained by linking the

Rademacher complexity using Lemma 4.4.5.

Let us begin with the loss function associated with robust logistic regression. Recall the

data log-likelihood in Eq.(4). Because of the monotonicity of the logarithm, maximising

the log-likelihood is equivalent to minimising the negative log-likelihood. It then follows

that we can define the loss function to be the negative of the data log-likelihood:

l(h,xn, yn) = −ỹn log(P̃ 1
n)− (1− ỹn) log(P̃ 0

n) (53)

1|f(x)− f(y)| ≤ ρ|x− y|
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We are now ready to consider the Rademacher complexity of rLR. By the above

definition, Rademacher complexity is measured with respect to a hypothesis class and a

training set. It has been shown that the complexity of the hypothesis class of a linear

halfspace classifier is bounded as:

Lemma 4.4.6 (Shalev-Shwartz [2009]) Let H = {x 7→ 〈w,x〉, ‖w‖2 ≤ λ} defines the

hypothesis class of linear classifiers. Let S = {x1, ...,xN} be a set of vectors in R
M . Then,

R(H ◦ S) ≤
λmax

n
‖xn‖2
√
N

(54)

Note that rLR can be regarded as a linear classifier because the loss is a function of

a linear function of w. Hence the complexity of its hypothesis class is also defined by

Lemma 4.4.6. Putting everything together, we state our result as the following:

Theorem 4.4.7 Let hs ∈ HrLR be an ERM hypothesis from the class of rLR classifiers,

and let l be the loss function defined in Eq.(53). Let S be a training set of N examples

drawn i.i.d. from an unknown distribution over R
M . We assume that ‖xn‖2 < ∞, ∀n =

1 : N , and also that γ00 and γ11 are bounded away from zero. Then, ∀δ ∈ (0, 1), with

probability at least 1− δ the following bound holds:

LD(hs) ≤ LS(hs) + 2
λmax

n
‖xn‖2√
N

+ c

√

log(1/δ)

2N
(55)

Proof We first show that the rLR loss function is a Lipschitz function with Lipschitz

constant ρ = 1. Note that ỹ can either take value 0 or 1 but not both at the same time,

so the loss function decouples into two terms. In order to obtain the Lipschitz constant,

we shall show that the absolute value of the derivative of each term is bounded by 1.

Without loss of generality, let us consider the first term, log P̃ 1
n . Also for convenience, we
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define a = wTx. Then,

P̃ 1
n =

γ11
1 + e−a

+
γ01e

−a

1 + e−a

=
γ11 + γ01e

−a

1 + e−a

∂ log(P̃ 1
n)

∂a
=
∂ log(γ11 + γ01e

−a)− log(1 + e−a)

∂a

=

∣

∣

∣

∣

−γ01e−a

γ11 + γ01e−a
+

e−a

1 + e−a

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

1 + ea
− 1

1 + γ11
γ01
ea

∣

∣

∣

∣

∣

= |f(α)| (56)

where in the last step we divided through by e−a, and we defined α := γ11/γ01. Since γ11

and γ01 are probabilities, their values are between 0 and 1. It follows that the domain of

α is [0,∞). Observe that Eq.(56) attains its maximum either 1) at its end points f(0)

and at the limit f(∞) or 2) at a point where f ′(α) = 0. The first case can be easily

checked by plugging the extreme values into Eq.(56), and we see that f(0) ∈ [−1, 0] and

f(∞) ∈ [0, 1]. The remaining case can be verified by calculating f ′(α), α ∈ (0,∞) which

turns out to be,

f ′(α) =
ea

(1 + αea)2
(57)

It can be seen that Eq.(57) is non-negative and can only be zero when α = ∞, which is

the case we have already considered. Hence, we learn that the absolute value of Eq.(56)

is bounded by 1. It follows that log P̃ 1
n is a 1-Lipschitz function. The case of log(P̃ 0

n) can

be shown to be 1-Lipschitz using similar technique. Next we need to show that the loss

function is bounded. Without loss of generality, let us consider Eq.(53) where ỹn = 1. It
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can be shown that the term is bounded by some finite number c.

∣

∣

∣

∣

− log(P̃ 1
n)

∣

∣

∣

∣

=

∣

∣

∣

∣

− log(
γ01e

−a

1 + e−a
+

γ11
1 + e−a

)

∣

∣

∣

∣

=
∣

∣ log(1 + e−a)− log(γ01 + γ11e
−a)
∣

∣

≤
∣

∣ log(1 + e−a)
∣

∣+
∣

∣ log(γ01 + γ11e
−a)
∣

∣

≤ 1 + ||w||2||x||2 +
∣

∣ log(γ01 + γ11e
−a)
∣

∣ (58)

where we have used triangle inequality to get the third line. The last line makes use

of a bound on the loss function of standard logistic regression which takes the form:

|log(1 + e−a)| ≤ 1 + ||w||2||x||2. For the second term we will show that its value is finite,

that is we show that an argument to logarithm is never be 0 or infinity. Since a = wTx

is bounded because of the assumptions and, γ11 is bounded away from zero, it can be

shown that 1) the maximum value of γ01+γ11e
−a is finite, and 2) its minimum is bounded

away from 0. As a consequence we have that rLR’s loss function is bounded by some

constant c. Ultimately, since we have that the loss function of robust logistic regression is

1-Lipschitz, and it is bounded by a finite constant c, we apply Lemma 4.4.5 to conclude

the statement of our theorem.

4.5 Empirical evaluation

4.5.1 Experiment setting

We pose the following questions: 1) Do the proposed methods improve upon their tra-

ditional counterpart in terms of generalisation error in label noise conditions? 2) If so,

under what type of label-noise is the improvement most apparent? 3) Are the proposed

methods able to identify the mislabelled instances accurately? 4) Can the gamma matrix

be interpreted in terms of the structure of the dataset being studied? To answer these
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questions, we conduct a number of numerical experiments.

Firstly, we compare the classification error of LR, rLR, mLR and rmLR together with

two other state-of-the-art algorithms on both synthetic and real world datasets. We also

compare the discriminative classifiers with the rNDA we have developed in the previous

chapter. We artificially inject symmetric class label noise ranging from 10% to 50% into

the datasets. We hold out 20% of the data for testing. At each level of noise we perform

100 independent repetitions. We report the error rates on the test sets in the form of the

mean and standard deviation over the independent repeats. The results should enable

us to draw conclusions on the performance of the proposed methods trained under the

presence of labelling errors.

Secondly, we study empirically the effect of two types of label flipping: symmetric

and asymmetric. Symmetric flipping is when each class is affected by label flipping in the

same proportion. In contrast, asymmetric flipping is when the labels flip from one class to

another and not vice-versa. This type of noise is expected to degrade the performance of

traditional classifiers to a larger degree, since it modifies the decision boundary between

the true classes.

In order to answer our third research question above, we employ the Receiver Oper-

ating Characteristic (ROC) curves to demonstrate the capability of our new algorithms

to identify the mislabelled points. Finally, we view the gamma matrix as the adjacency

matrix of a graph over the classes and examine the interpretability of the resulting graph

in answer to our fourth question.

4.5.2 Datasets

We used two synthetic datasets and nine real world datasets to assess and demonstrate

the effectiveness of rLR and rmLR. The first synthetic data, Synth-1, is generated by

sampling points from a Gaussian distribution where the class label associated with each
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point is assigned by a logistic function with a pre-defined weight vector w. The dataset

obtained is thus a Gaussian with each half belonging to a different class. This dataset

clearly favours the discriminative model over the generative model. The second synthetic

dataset, Synth-2, is a mixture of three Gaussians that we use to validate the performance

of the multi-class classifier, rmLR.

For real world problems we used nine datasets from the UCI repository: The binary

datasets Boston, Pima, Liver, Adult and Websearch are used to evaluate the classification

performance of rLR, while the multi-class datasets Iris, Wine, Newsgroups1 and USPS

handwritten digits are employed to evaluate rmLR. Label noise of various levels was arti-

ficially injected for the purpose of systematic testing, except for Websearch, Newsgroups

and USPS, in which we detect mislabelled points that are genuinely part of the data.

All datasets used, except Newsgroups and USPS (which are discrete valued), are

standardised a priori. The latter two were normalised using cosine normalisation (Salton

and Buckley [1988]), and the Newsgroups text corpus was also subject to tokenisation,

stop words removal, and Porter stemming (Porter [1997]) to remove the word endings

prior to cosine normalisation. We summarise the characteristics of each of these datasets

in Table 4.3.

4.5.3 Simulated noise

Results on synthetic data

We now present the numerical results from the experiments. Figure 4.2(a) shows the

generalisation error of the algorithms on Synth-1 dataset with symmetric label flipping.

We see that rLR and rmLR achieve lower error rates than LR and mLR. They also

outperform rNDA as expected. However, it is arguable that the improvement is marginal

in this case, the difference in performance is less than just 5%. The reason for this is

1Originally the Newsgroups corpus comprises 20 classes of postings. We use the subset of 10 classes
from Kabán et al. [2002], with term frequency count based encoding.
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Dataset # Samples Dimensionality # Classes
Synth-1 1000 5 2
Synth-2 1000 5 3
Boston 506 13 2
Pima 768 8 2
Liver 345 6 2
Adult 1000 6 2
Iris 150 4 3
Wine 172 13 3
Newsgroups 8000 300 10
USPS digits 11000 256 10
Websearch 1000 10038 2

Table 4.3: Characteristics of the datasets employed in the reported experiments.
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(b) Asymmetric flipping

Figure 4.2: Classification error on Synth-1 dataset

that even though the class labels are noisy, the flips are symmetrically distributed across

both classes and so the decision boundary is not greatly affected. Hence, the traditional

algorithms are still able to find near optimal decision boundary — which translates into

near optimal classification performance. To verify our explanation, next we apply the

asymmetric flipping mechanism. By doing so we expect that the decision boundary will

be shifted away from the true one, which will fool the traditional algorithms. Figure

4.2 reports the performance of the algorithms under the asymmetric label flipping. It is

clear that the improvement gained is much apparent than what we have obtained in the

symmetric case, in general. However, it is worth noting that in an extreme case (50%
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(c) rLR - Symmetric flipping
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(d) rLR - Asymmetric flipping

Figure 4.3: Decision boundary obtained by LR and rLR at 40% symmetric and 40%
asymmetric label noise respectively. The green lines are the estimates and the black lines
are the true values. The dotted orange line represents w while the solid line represents
the decision boundary. Clearly, the asymmetric noise shifts the true decision boundary.

noise) symmetric noise is also detrimental as it can destroy the original class structure

such that an algorithm could go wrong totally. We also see that the rNDA is superior

to the non-robust discriminative classifier. Still, it could not match rLR and rmLR.

This is mainly because of the underlying distribution which is more challenging for the

generative approach. To further illustrate the effect of asymmetric flipping, we present a

2D example in Figure 4.3. Here we see the decision boundary of LR and rLR obtained

from applying the algorithms on a synthetic dataset at 40% asymmetric label noise. It

is clear that asymmetric flipping indeed perturbs the decision boundary to a significant

degree. Needless to say, this behaviour persists in the multi-class case too. Before moving
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Figure 4.4: Classification error on Synth-2 dataset

on, it may be useful to note also that the performance of rLR and rmLR is practically

identical in these 2-class settings. This was expected, since rmLR is the generalisation

of rLR, and so in fact rmLR can be used for both multi-class and binary classification

problems.

Next, we validate our rmLR in a multi-class classification problem, using Synth-2.

Figure 4.4 summarises the results and shows that mLR stays effective up to 10% noise

but after that point rmLR gives better results. As in the binary case, again our algorithm

with noise modelling is substantially superior in comparison to its traditional counterpart.

We also see that the rNDA has a slight edge over rmLR. This is because the dataset, which

is a mixture of Gaussian, fits the Gaussianity assumption of the rNDA.

Results on real data

Real data tends to be more complex, so we further assess our methods on real world

datasets. In addition, we will compare our result to two existing methods: (i) Depura-

tion (Barandela and Gasca [2000]), which is a non-parametric method based on nearest

neighbours, previously proposed for the same problem of dealing with label-noise in clas-

sification; and (ii) Support Vector Machines (SVM) (Cortes and Vapnik [1995]), which

has the well-known margin and slack-variable mechanism built in, and which may provide

some robustness. The reason to compare with SVM is to find out to what extent class
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label noise could be considered to be a normal part of any classification problem — and

conversely, to what extent it actually needs the special treatment that we developed in the

previous sections. Since rLR and rmLR are both linear classifiers, we used linear kernel

in the SVM. We shall, however, study non-linear problems in Chapter 6.

It should be noted that when applying Depuration and SVM, we again face with the

problem of model selection. For a nearest-neighbour based algorithm, the number of

neighbours needs to be determined as well as the model’s additional threshold parameter.

SVM requires an optimal C parameter to be set. A general approach to model selection

is a standard cross validation technique. Although this works well in a traditional setting

where all class labels are correct, it is no longer applicable here. This problem was also

reported in Lawrence and Schölkopf [2001], where they need to choose the hyperparameter

of their kernel Fisher discriminant. However, the solution they resort to is simply to

assume that there is a trusted validation set available. This may be unrealistic in many real

situations, and especially so in small-sample problems as in Zhang et al. [2009]. Moreover,

even if we have a trusted validation set, the additional computation time required might

also be a concern.

For Depuration, this problem is still open, and we use the default values suggested

in Sánchez et al. [2003], where it was found that a neighbourhood size of k = 3 and a

threshold of k′ = 2 works well in practice. For the SVM, we will do an idealised hyperpa-

rameter selection for the purpose of our comparison experiments: we use cross validation

on the clean data to pick the hyperparameter C and then use that value throughout the

noisy label experiments. Clearly this should work in favour of SVM, so if SVM is unable

to outperform our methods in label noise conditions then we can conclude that modelling

the noise was necessary.

Figure 4.5 summarises our results on four binary classification datasets. It is clear that

both rLR and mrLR outperform each algorithm on each of the datasets tested, except

81



0 10 20 30 40 50
10

15

20

25

30

35

40

45

50

55

60

Noise Level (%)

G
e

n
e

ra
lis

a
ti
o

n
 E

rr
o

r(
%

)

 

 

rLR
LR
rmLR
Depuration
SVM

(a) Boston dataset
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(b) Pima dataset
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(c) Liver dataset
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(d) Adult dataset

Figure 4.5: Classification errors on real world datasets when the labels are asymmetrically
flipped

when there is no label noise in the dataset. At 0% noise, SVM, LR and mLR output

the best result. In that case, the extra complexity of modelling the noise probabilities

in unnecessary and the price to pay for estimating these extra parameters is a slightly

worse performance or the necessity of more training points. However, in all noisy cases

the improvement is apparent. Depuration tends to perform well in a very high level of

noise (i.e. 40% upwards) while at the lower range, its performance is slightly worse.

The comparative results with SVM also demonstrate convincingly that class label

noise does need special attention and it is naive to consider label noise as a normal

part of classification problems. We see that our algorithm developed explicitly for this

problem does indeed achieve improved classification performance overall. The picture

is consistently similar in multi-class problems. Figure 4.6(a) and Figure 4.6(b) show
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(a) Iris dataset
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(b) Wine dataset

Figure 4.6: Classification errors on multi-class problems using the Iris and Wine datasets.
The labels are asymmetrically flipped.

the performance of rmLR for the Iris and Wine datasets. Again, the proposed modelling

approach significantly outperforms the traditional approaches in asymmetric label-flipping

conditions on both datasets tested. We also see the rNDA also performs very well. It stays

effective up to 30% noise in Iris dataset and even outperforms rmLR in Wine dataset.

We speculate that the underlying distributions of these two datasets are approximately

Gaussian.

Next, we assess our methods’ ability to detect the instances that were wrongly labelled.

There are two types of possible errors: (i) a false positive is when a point is believed to

be mislabelled when in fact it is labelled correctly; and (ii) a false negative is when a

point is believed to be labelled correctly when in fact its label is incorrect. A good way

to summarise both, while also using the probabilistic output given by the sigmoid or the

softmax functions, may be obtained by constructing the Receiver Operating Characteristic

(ROC) curves. Figure 4.7 shows the ROC curves for all six real world datasets tested, at

an asymmetric noise level of 30%. Superimposed for reference we also plotted the ROC

curves that correspond to the traditional classifier that believes that all points have the

correct labels. The gap between the two curves is well apparent in all six cases tested,

and it quantifies the gain obtained by our modelling approach in each setting. The area

under the ROC curve signifies the probability that a randomly drawn and mislabelled
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example would be flagged by our method. For the sake of clarity of the graph, the results

from Depuration and SVM were not included here as we have already seen that they are

inferior to rLR and rmLR. What is surprising about these results is that despite the real

world datasets are not perfectly separable by a linear classifier, and the shapes of their

multivariate distributions are not controlled in any way, still, our classifiers have been able

to capture essential regularities in the data so that label assignments that are inconsistent

with it turn out to predict the actual mislabelling to a relatively high degree of accuracy.

4.5.4 Real data with inaccurate label

So far we presented controlled experiments where the label-noise was artificially created.

It is now most interesting to demonstrate the effectiveness of our approach on a dataset

whose labels are genuinely inaccurate.

Learning to classify images using cheaply obtained labelled data

It is well reckoned that careful labelling of large amounts of data by human experts is

extremely tiresome. Suppose we were to train a classifier to distinguish an image of ‘bike’

from other type of images. The standard machine learning approach is to collect training

images and manually label each of them — rather labourious. Here, we suggest that

we could reduce human expert intervention and obtain the training data cheaply using

annotated data from search engines. By searching for images using keyword ‘bike’ we

obtain a set of images that are loosely categorised into ‘bike’ class, and similarly ‘not

bike’ class by using its negation. This allows us to acquire a large number of training

data quickly and cheaply. The problem is of course that the annotations returned by

the search engine are somewhat unreliable. This is where rLR comes into play. Here

we collected 515 images using the keyword ‘bike’ and 515 images using the keyword ‘not

bike’ that we call the WebSearch1 dataset. We also manually label all images: a ‘bike’

1Collected using Google image, available at http://cs.bham.ac.uk/∼jxb008/data/websearch.zip
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(b) Pima dataset
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(c) Liver dataset
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(d) Adult dataset
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(f) Wine dataset

Figure 4.7: Receiver Operating Characteristic curves. Labels are asymmetrically flipped
at 30% noise
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image is one that contains a bike as its main object and we make no distinction between

a bicycle and a motorbike, everything else is labelled as ‘not bike’. This reveals 83 flips

from ‘bike’ to ‘not bike’ images and 100 flips from ‘not bike’ to ‘bike’ category. The

manually labelled set is only used for testing purposes. The images are passed through

a series of preprocessing including extracting meaningful visual vocabulary using SIFT

(Lowe [1999]) and extracting texture information using LBP (Ojala et al. [2002]), which

are ultimately transformed into a 10038-dimensional vector representation.

Agreed: Bike Agreed: ¬Bike Agreed: ¬Bike P: ¬Bike,  L: bike Agreed: ¬Bike

P: ¬Bike,  L: bike P: ¬Bike,  L: bike P: ¬Bike,  L: bike P: ¬Bike,  L: bike Agreed: ¬Bike

Agreed: ¬Bike Agreed: Bike P: ¬Bike,  L: bike Agreed: ¬Bike Agreed: ¬Bike

Agreed: Bike Agreed: Bike Agreed: ¬Bike Agreed: Bike Agreed: Bike

P: ¬Bike,  L: bike Agreed: Bike Agreed: ¬Bike Agreed: Bike Agreed: Bike

Agreed: Bike Agreed: Bike P: ¬Bike,  L: bike Agreed: Bike Agreed: ¬Bike

Figure 4.8: Bike search result. P is the prediction from the classifier while L is the given
label from search engine. Boxed instances are the ones that P and L don’t agree while
dotted boxes are false alarms.

In Figure 4.8 we show examples of detecting mislabelled images. The top 30 test

images sorted by their posterior probabilities are shown. We see that out of a total of

8 suspicious detections made (boxed), only 2 were false alarms (denoted by dotted box

in the figure). Comparatively, the traditional LR model produced 4 false alarms (not
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shown). To give statistical figures, we then tested these two classifiers that were both

trained on 90% of whole dataset using the cheap noisy labels from the search engine, and

tested on the remaining 10%, against the manual labels. We performed 100 independent

bootstrap repetitions of this experiment. The average generalisation error rates and their

standard errors were 15.67% ± 0.04 for rLR and 18.09% ± 0.04 for standard LR. The

improvement of rLR over LR is statistically significant, as tested at the 5% level using

a Wilcoxon Rank Sum test. This suggests that there is high potential for learning from

unreliable data from the Internet using the label-noise robust algorithm proposed.

Inferring a class topology in multi-class problems, and detecting peculiar or

mislabelled instances

The last set of experiments demonstrates a different use of our label-robust classifier,

namely to infer the internal topological structure of the data classes. For many real-world

classification tasks the labelling process is somewhat subjective as there is no clear-cut

boundary between the classes. For example, in the case of classifying text messages

according to topic, some instances could be assigned to more than one category. In fact

we can imagine the topological relationship between the topic classes in the form of a

graph. We posit that this relationship graph can be captured by our algorithm via the

gamma table. Thus, interpreting the gamma matrix as the adjacency matrix of a directed

graph could reveal the internal structure of the dataset under study. To demonstrate this

idea, we employed rmLR on the 10 Newsgroups and the USPS handwritten digits dataset,

and we analyse the gamma matrices obtained.

Figure 4.9 shows the graph derived from the gamma matrix as obtained from 10

Newsgroups. Each node corresponds to a topic class while the length of an edge connecting

two nodes represents the strength of relationship between them. The direction of arrows

then correspond to the label flipping directions. To draw the graph we used the Pajek

network visualisation software (Batagelj and Mrvar [1998]). It can be seen from this graph
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alt.atheism

misc.forsale

sci.crypt

sci.electronics

sci.med

sci.space

talk.politics.guns

talk.politics.mideast

talk.politics.misc

talk.religion.misc

Figure 4.9: Adjacency graph of the ten topics on the Newsgroups dataset.

that “atheism” and “religion” are related topics by looking at the distance between the two

as well as the bi-directional flipping relation, which indeed agrees with our commonsense.

A similar observation can also be made between the “electronics” and “for-sale” postings.

Further, the graph also visually suggests various sub-groupings: For example, all classes

related to politics are clustered nearer to each other. Further, besides this global view of

the whole dataset we can look up the actual content of the messages that have the highest

mislabelling probabilities. Five such examples are given in Table 4.4. The ambiguity of

topic label assignments is quite apparent in all of these cases.

Labelled sci.electronics talk.religion.misc talk.religion.misc talk.politics.misc talk.politics.guns
Predicted misc.forsale alt.atheism talk.politics.misc talk.politics.guns talk.religion.misc

‘sell’ ‘peopl’ ‘write’ ‘peopl’ ‘write’
‘price’ ‘true’ ‘state’ ‘price’ ‘fire’
‘don’ ‘belief’ ‘peopl’ ‘american’ ‘system’

‘electron’ ‘statem’ ‘de’ ‘death’ ‘fact’
‘comput’ ‘moral’ ‘point’ ‘person’ ‘don’
‘circuit’ ‘articl’ ‘fact’ ‘card’ ‘forc’

‘condition’ ‘thing’ ‘claim’ ‘kill’ ‘happen’
‘point’ ‘email’ ‘children’ ‘bill’
‘horu’ ‘bill’ ‘commit’
‘frank’ ‘koresh’ ‘center’

Table 4.4: Examples of text messages that are inferred to be most likely mislabelled. The
content of each message is displayed using up to ten word stem features.

The first example in Table 4.4 was originally labelled as “sci.electronics” while our
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Figure 4.10: Adjacency graph of the ten classes of the USPS handwritten digits dataset.

algorithm predicts that it should rather belong to “misc.forsale”. Indeed, terms such

as ‘sell’, ‘price’ and ‘condition’ that appear in this document support this prediction.

Through this analysis we found that “sci.med” and “sci.crypt” are topic classes that are

unrelated to the rest of topics, while “sci.space” is related to topics about guns and politics.

It is worth mentioning that the gamma matrix needs not be symmetric. That is because,

say classified ads may contain terms related to electronics but electronics postings may

never have terms like ‘sell’, ‘price’ and ‘condition’.

We performed a similar experiment to obtain the class relationship graph of the USPS

handwritten digits dataset. The result is presented in Figure 4.10. At a first glance, the

resulting graph again agrees well with our common-sense as, for example, digit 7 and digit

1 can sometimes be very difficult to distinguish in handwriting. A similar confusion arises

between digit 6 and 5, digit 6 and 4, and so on. Though, we could imagine many other

cases where digit n has been written too similarly to digit m, and those imaginary cases

may never be found in our dataset. For more concreteness, we show in Figure 4.11 the

instances that our classifier infers to be most likely mislabelled.
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(a) L1-P7 (b) L7-P1 (c) L6-P4

(d) L6-P4 (e) L9-P5 (f) L4-P9

Figure 4.11: Examples of the images that the algorithm infers to be most likely misla-
belled. Ln-Pm means that the image was labelled as digit n but was predicted by the
algorithm as digit m.

The first two of these examples confirm that 1 and 7 are sometimes written very simi-

larly which could induce a confusion to both the human labeller as well as the algorithm.

Indeed, there is no absolute right or wrong when assigning an image to a particular class

in all cases, and our method is able to find the most peculiar examples. The image could

be perceived differently depending on one’s mental experience and interpretation. The

point is, it is not easy to argue that those confusing images were actually wrongly la-

belled but we can at least see how the classes of digits, as suggested by the algorithm, are

distributed. This can be useful when one would like to know more about the underlying

structure of the dataset. From the other viewpoint, if we happened to have prior knowl-

edge of the distribution of classes, we could pre-define the gamma matrix in hoping for a

better classification performance.

4.6 Summary

We proposed a label-robust logistic regression algorithm for both two-class (rLR) and

multi-class (rmLR) classification learning in the presence of labelling errors. The numer-

ical experiments on artificial data with simulated label noise and on real applications
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that genuinely contain label noise suggest that rLR and rmLR are superior to their tradi-

tional counterparts when the training data contains labelling errors, and more significantly

so when the label-flipping distribution is asymmetric. These empirical observations are

backed up by an error analysis and a model decomposition analysis.

In the next chapter we shall investigate more about an important and challenging

real application of the proposed discriminative model. We will study the classification of

microarray data which has been reported to contain wrong labelled samples with biological

evidence.
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CHAPTER 5

Robust Bayesian Logistic Regression

High-throughput microarray technologies make it possible to simultaneously measure the

expression levels of thousands of genes. Our ability to use these data to reliably predict

the presence of a certain disease and to better understand the biological mechanisms

underlying the development of disease is of fundamental importance from the perspective

of treatment and prevention. Statistical machine learning methods have already shown

a lot of promise towards these goals, and methods that can deal with high dimensional

and low sample size settings have been the subject of considerable research efforts over

the last decade. Previous studies reported that labelling errors are not uncommon in

microarray datasets. In such cases the training set may become misleading, and the

ability of classifiers to make reliable inferences from the data is compromised.

In this chapter we address the above problems by developing an integrated approach

where the ambiguity of the given label assignments is modelled explicitly during the

training of a classifier. This allows us to build on classifiers that have been successful for

microarray classification by developing an extension to account for possible label noise.

Specifically, here we will harness the sparse Bayesian logistic regression (BLogReg) model

proposed by Cawley and Talbot [2006] with a robustness against label noise. From our
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model formulation, we then derive a new algorithm that alternates between training the

classifier and estimating the label noise probabilities. The regularisation parameter is au-

tomatically set using Bayesian regularisation, which not only saves the computation time

that cross-validation would take, but also eliminates any unwanted effects of label noise

when setting the regularisation parameter. Extensive experiments with both synthetic

data and real microarray datasets demonstrate that our approach is able to counter the

bad effects of labelling errors in terms of predictive performance, it is effective at identi-

fying marker genes, and simultaneously it detects mislabelled arrays to high accuracy.

5.1 The model

The robust model used in this chapter is identical to that presented in Chapter 4. We

shall revisit the model formulation for the sake of readability. Consider a set of training

data S = {(xn, ỹn)}Nn=1, where xn ∈ R
M and ỹn ∈ {0, 1}, where ỹn denotes the observed

label of xn. Using a latent variable y to denote the true class label the robust objective

can be written as:

L(w,Γ) =
N
∑

n=1

ỹn log P̃
1
n + (1− ỹn) log P̃ 0

n (1)

where

p(ỹn = k|xn,w) =
1
∑

j=0

p(ỹn = k|y = j)p(y = j|xn,w)
def
= P̃ k

n (2)

We decide that xq belongs to class 1 whenever p(y = 1|xq,w) ≥ 0.5.

5.1.1 Sparsity prior

Microarray data are high dimensional with more features than observations while only

a subset of the features is relevant to the target. A vast literature demonstrates that

sparsity-inducing regularisation approaches are effective in such cases (MacKay [1995],

Shevade and Keerthi [2003], Cawley and Talbot [2006]). Hence we now incorporate spar-

93



sity in our model described in the previous section. Following Shevade and Keerthi [2003]

and Cawley and Talbot [2006], we will employ an L1 regularisation term which results in

the following objective function:

max
w

N
∑

n=1

log p(ỹn|xn,w)− λ‖w‖1 (3)

where λ is the Lagrange multiplier (or regularisation parameter) that balances between

fitting the data well and having small parameter values. The L1-norm in the regularisation

term is defined as,

‖w‖1 =
M
∑

m=1

|wm| (4)

Now, the regularisation parameter λ needs to be determined. We cannot use cross-

validation, not only for its computational demand, but primarily because it would need

a validation set with trusted correct labels, which may be not available. Hence we adopt

the Bayesian regularisation approach of Cawley and Talbot [2006], which bypasses the

need for cross validation and determines λ automatically by putting a Jeffreys’ prior on λ

and integrating it out from the model. This yields the following (see Cawley and Talbot

[2006] for details)1.

λ =
P

∑P
d=0 |wd|

(5)

where P denotes the number of non-zero parameters, i.e. those with wd 6= 0 – so P ≤M .

5.2 Parameter estimation

It now remains to estimate w and Γ. Notice that Eq.(3) is not differentiable at the origin.

Therefore, the algorithm we proposed in Chapter 4 is not applicable. Fortunately, Shevade

and Keerthi [2003] proposed a simple yet effective algorithm to optimise the non-smooth

1The reader should refer to Chapter 6 where we also treat model selection problem using Bayesian
regularisation.

94



but convex objective function of sparse logistic regression (SLogReg) using the Gauss-

Seidel method and employing coordinate-wise descent. We will create a modification of

this approach in order to make it applicable to our non-convex objective.

5.2.1 Updating the weight vector

We define Fd =
∂L(w,Γ)
∂wd

, where wd=0 is the bias term that is usually left unregularised. The

first order optimality conditions for the objective function can be derived from geometry,

similarly as in Shevade and Keerthi [2003] and Cawley and Talbot [2006]:

• Case 1: d = 0

As w0 corresponds to the bias term which needs not be regularised, we have that

Eq.(3) is differentiable w.r.t. w0 and attains its optimum when F0 = 0. Any value of

F0 that deviates from zero is an ‘optimality violating state’. The degree of violation

is quantified as viol0 = |F0|. Note that it is difficult to achieve viold = 0 because

the algorithm is asymptotically convergent. In practice, we only need to ensure that

viold is smaller than some pre-defined tolerance τ , i.e. viold ≤ τ, ∀d.

• Case 2: wd 6= 0, d 6= 0

When wd > 0, Eq.(3) is not differentiable at zero but it is differentiable on wd ∈

(0,∞). Taking derivative of Eq.(3) w.r.t. wd and equating it to zero, we have

λ− Fd = 0.

Likewise, when wd < 0 we have −λ− Fd = 0. We thus define the value of |λ− Fd|

and |λ+ Fd| as the ‘optimality violating state’.

• Case 3: wd = 0, d 6= 0

The Eq.(3) is only directionally differentiable at zero. We require that 1) the right-

side derivative be non-negative, λ − Fd ≥ 0 and 2) the left-side derivative be non-

positive, −λ − Fd ≤ 0. Combining both requirements we have, −λ ≤ Fd ≤ λ. A

violation is then defined to be the case where Fd falls out of this interval.
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The optimality conditions for Eq.(3) can be stated algebraically as the following:

Fd = 0 if d = 0
Fd = λ if wd > 0, d > 0
Fd = −λ if wd < 0, d > 0
−λ ≤ Fd ≤ λ if wd = 0, d > 0

Accordingly, the violation from optimality of wd may be summarised as:

viold = |Fd| if d = 0
= |λ− Fd| if wd > 0, d > 0
= |λ+ Fd| if wd < 0, d > 0
= max(Fd − λ,−λ− Fd, 0) if wd = 0, d > 0

We start optimising the component wd that makes the largest violation to an optimality

condition. At this point, if the objective function was convex then it would be possible

to use gradient information to bracket the region where the optimal wd lies by specifying

upper and lower limits (H and L). For example, Shevade and Keerthi [2003] identify

10 different cases for their sparse logistic regression model (Table 5.1). However, since

our likelihood term is non-convex, the cases identified there are not applicable because

the sign of gradients give no information about the interval where the optimal solution

resides. Therefore we introduce a simple modification by performing two searches: one

in the range R
+ ∪ {0} and another in the range R

− ∪ {0}. We then choose the solution

that returns a higher value of the objective function. This modified searching approach

is more general and will work on any locally differentiable function at the expense of a

slight increase in computation time. In practice, L and H are finite – provided that the

design matrix is standardised and appropriate regularisation is imposed on the solution,

it is sufficient to search in the (0, 1000) and (−1000, 0) intervals.

5.2.2 Updating the label flipping probabilities

Finally, having completed the optimisation of w, it remains to derive the update rule

for the label-flipping probabilities. Conveniently, these can be estimated via fixed point
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Case wd Fd L-hand Fd R-hand Fd L H
1 0 - < 0 < 0 0 +∞
2 0 - > 0 > 0 0 −∞
3 < 0 > 0 - - −∞ wd
4 > 0 < 0 - - wd +∞
5 < 0 < 0 > 0 - wd 0
6 > 0 > 0 - < 0 0 wd
7 < 0 < 0 - > 0 0 +∞
8 > 0 > 0 < 0 - −∞ 0
9 < 0 < 0 ≤ 0 ≥ 0 0 0
10 > 0 > 0 ≤ 0 ≥ 0 0 0

Table 5.1: Bracketing cases for convex objective function in BLogReg.

update equations. By introducing a Lagrange multiplier to ensure that the probabilities in

each row of the gamma table sum to 1 and solving the stationary equations, we obtain the

following update equations. Derivation details are similar to those presented in Chapter

4.

γ00 =
g00

g00 + g01
, γ01 =

g01
g00 + g01

(6)

γ10 =
g10

g10 + g11
, γ11 =

g11
g10 + g11

. (7)

where

g00 = γ00

N
∑

n=1

(1− ỹn)
P̃ 0
n

(1− σ(wTxn)) (8)

g11 = γ11

N
∑

n=1

ỹn

P̃ 1
n

σ(wTxn) (9)

g01 = γ01

N
∑

n=1

ỹn

P̃ 1
n

(1− σ(wTxn)) (10)

g10 = γ10

N
∑

n=1

(1− ỹn)
P̃ 0
n

σ(wTxn) (11)

The optimisation of the log-likelihood is then to alternate between optimising w along
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with updating λ according to Eq.(5) until convergence is reached, and we alternate this

with the fixed point update equations of the label flipping probabilities. The entire opti-

misation procedure is summarised in Algorithms 4-5.

Algorithm 4 Main loop

Input: Training examples.
Initialise w← 0, λ← 0, Inz ← {w0}, Iz ← {wd,d∈{1,M}}, Γ.
while Optimality violator exists in Iz do
Find the greatest optimality violator, ν, in Iz
repeat
Optimise wν using Algorithm 5
Iz ← Iz\{wν}
Inz ← Inz ∪ {wν}
Find the maximum optimality violator, ν, in Inz

until No violator exists in Inz
Update the entries of Γ by Eqs.(6)-(7)
Update regularisation parameter, λ by Eq.(5)

end while
Output: Optimised weight vector, w. Optimised Γ.

Algorithm 5 Optimisation of w

Input: Violating component, wν , Iz, Inz
wν ← 0
if wν satisfies optimality conditions then
Iz ← Iz ∪ {wν}
Inz ← Inz\{wν}
break

else
Restore previous value of wν
t1 ← Optimise Eq.(1) w.r.t. wν in the range (−lim, 0) range
t2 ← Optimise Eq.(1) w.r.t. wν in the range (0, lim) range

end if
wν ← ti that maximise Eq.(1), where i ∈ {1, 2}.

Output: Optimised wν
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5.3 Detecting mislabelled points

For an observation (xn, ỹn), the probability of it being mislabelled can be computed as

the following:

p(y 6= ỹn|xn) =
1
∑

j=0,j 6=ỹn

p(y = j|xn) (12)

This may be thought of as the models “degree of belief” that xn’s label is incorrect. We

may use it either in this form, or in a hard-thresholded form (i.e. predict that the point

xn is mislabelled if p(y 6= ỹn|xn) ≥ 0.5).

5.4 A note on low sample size, high dimensional data

Since additional parameters Γ are being estimated from the data, we expect that RLogReg

will require more training examples to deliver its full potential. In microarray datasets the

training set size is often of the order of tens only. A possible workaround in such cases is

to guide the algorithm by presetting the gamma table from domain knowledge about the

likely proportion of mislabelled data. When such knowledge exists, the values of gamma

may either be fixed through-out the optimisation process or they may be seeded initially

and then optimised.

5.5 Empirical evaluation

5.5.1 Experiment setting

We will compare the classification performance of RLogReg, RLogReg with fixed gamma

table (denoted RLogReg-F) and its traditional counterpart, i.e. BLogReg of Cawley and

Talbot [2006]. The reader is referred to Cawley and Talbot [2006] for a comparison

between BLogReg against the Relevance Vector Machine (RVM) and SLogReg (Shevade

and Keerthi [2003]) where BLogReg was shown to be superior. We shall demonstrate that
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our proposed robust extension of BLogReg performs better than the original BLogReg in

terms of classification performance when there is label noise present in the training set.

Moreover, our model can be used to identify mislabelled arrays for potential follow-on

study.

Before proceeding, recall that symmetric and asymmetric label flipping have very

different consequences in classification. Symmetric or uniform flipping means that each

class is affected by label flipping in the same proportion. In contrast, asymmetric or

non-uniform flipping is when the label flips from one class to another more often than

vice-versa. The latter type of label flipping has been theoretically shown (Lugosi [1992])

to degrade the performance of an algorithm to a much larger degree, since it modifies the

decision boundary between the true classes. Our empirical study in the previous chapter

also demonstrated this. Therefore we will mainly focus our attention on datasets with

asymmetric label noise and indeed expect the advantages of our approach to be most

apparent in that setting.

To demonstrate the benefit of having a label noise model embedded in the classifier,

we start with experiments on synthetic data where labels were asymmetrically flipped

at the rate of 30%. The use of synthetic data for controlled experiments is standard in

bioinformatics (see e.g. Zhang et al. [2009]), since it allows us assess the performance

of a new approach against a ground truth. We shall then move on to analysing real

microarray datasets where label noise has not been injected artificially. These datasets

have been previously reported to contain wrongly labelled samples. Finally, we shall

assess the ability of our proposed approach to identify mislabelled instances, employing

Receiver Operating Characteristics (ROC) analysis.

100



5.5.2 Datasets

We generate these synthetic datasets following the protocol in Ng [2004], by sampling

points from a standard Gaussian distribution where the class label associated with each

point is assigned by a logistic function with a predefined weight vector w. The pre-defined

w were as follows:

• one relevant feature: w1 = 10, wd = 0, ∀d > 1

• three relevant features: w1 = w2 = w3 = 10/3, wd = 0, ∀d > 3

• features with exponentially decaying relevance: wd = (1/2)d−1
√
75, ∀d ≥ 1.

For each of these, we create sets with 500 training points and sets with 100 training points

together with independent test sets of 100 points, and call these datasets Synth-500 and

Synth-100 respectively. The dimensionality of the synthetic datasets ranges from 100 up

to 1000. Asymmetric label noise was artificially injected into each synthetic dataset at

the 30% rate.

Further, we use three real microarray datasets: Colon (Alon et al. [1999]) Breast (West

et al. [2001]) and Leukaemia (Golub et al. [1999])– all of which are known to contain some

mislabelled arrays. No artificial label flipping is injected in these data. We standardise

these datasets so the rows of the N × M design matrix (where N is the number of

observations and M is the dimensionality) of the input sample will have zero mean and

unit variance. Table 5.2 summarises the characteristics of all of these datasets employed.

5.5.3 Error measures

While in the case of synthetic data the true labels can be used to validate the predictive

accuracy of our algorithm, in the real microarray data there is no absolute ground truth.

Since the labels given in the datasets may be incorrect, the issue of what should count as
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a miclassification must be defined. We define two variants for measuring out-of-sample

error rates:

• Corrected (CRT): Count misclassification errors against the ‘corrected’ labels where

corrections are made cf. the mislabellings reported in the literature.

• Cleansed (CLN) : Exclude any mislabelled suspects (known in the literature) from

the test sets for the purpose of evaluation, so these are always placed into the

training set instead; then count the misclassification errors on test sets in the usual

way.

5.5.4 Results and discussion

Results on synthetic data

The average misclassification error rates on the Synth-500 and Synth-100 datasets are

shown in Figure 5.1 as the data dimension is varied. Each point on these plots represents

the average misclassification rate on the test sets, where the average is taken over 500

independent repetitions of the experiment. We see that RLogReg achieves substantially

lower error rates than BLogReg on the datasets that contain more training examples

(Synth-500 ). This clearly demonstrates the advantage of modelling the label noise process.

On the smaller size dataset (Synth-100 ), however, the performance gain becomes marginal

— this is because the accurate estimation of the additional parameters (label flipping

Dataset # samples # genes # wrong labels
class 1 class 2 class 1 class 2

Synth-500 250 250 100-1000 0 75
Synth-100 50 50 100-1000 0 15
Colon cancer 40(T) 22(N) 2000 5 4
Breast cancer 25(ER+) 24(ER-) 7129 4 5
Leukaemia 25(AML) 47(ALL) 7129 1 0

Table 5.2: Characteristics of the datasets employed in the reported experiments.
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probabilities) requires sufficient training data for our approach to achieve its full potential.

Nevertheless, it is should be noticed that even in the small sample setting, RLogreg

performs no worse than BLogReg on all the datasets tested. More importantly, the

rightmost plot shows that we can counter the problem of small sample sizes by using

prior knowledge about the extent of label noise, e.g. by pre-defining the gamma table. We

denote this version as RLogReg-F in the figure, and we see this substantially improves the

classification accuracy in the small sample setting. Beyond classification performance, it is

of interest to evaluate the methods’ ability to identify the relevant predictive genes. Figure

5.2 shows the estimated weight vectors as obtained by BLogReg and RLogReg respectively

from 100-dimensional synthetic data with only the first 3 features being relevant. The

classifiers were trained on 250 training examples per class that were subjected to 30%

asymmetric label flipping. We see that RLogReg achieved a more accurate estimation of

the weight vector, while BLogReg became confused by the noisy labels and selected too

many false non-zero weights. This is an important advantage of RLogReg over BLogReg

when it comes to finding a small set of predictive marker genes.

Results on Colon cancer dataset

The colon cancer classification task aims to distinguish between normal tissue and tumour.

According to Alon et al. [1999] there is biological evidence that the samples T2, T30, T33,

T36, T37, N8, N12, N34, N36 may be mislabelled. The proportion of mislabelling in the

two classes is unequal, hence this is a case of asymmetric label flipping that can distort the

correct decision boundary of the classes. The very limited number of training observations

implies that a good estimate of the gamma table may be difficult to obtain from the

data alone (as we have seen in the previous section), nevertheless prior knowledge of the

noise proportions may still allow us to exploit the advantages of having a noise model as

integral part of our classifier. Therefore we include RLogReg-F in our experiments, with

the gamma table set to the true label flipping proportions. Table 5.3 reports the leave-one-
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(a) Synth-500, 1 relevant feature
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(b) Synth-100, 1 relevant feature
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(c) Synth-500, 3 relevant features
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(d) Synth-100, 3 relevant features
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(e) Synth-500, exp decay relevance

200 400 600 800 1000
10

15

20

25

30

35
 

Number of Features

M
is

c
la

ss
if
ic

a
ti
o

n
 E

rr
o

r 
(%

)

 

 

BLogReg
RLogReg
RLogReg−F

(f) Synth-100, exp decay relevance

Figure 5.1: Misclassification on test set, as obtained by RLogReg and BLogReg respec-
tively, on synthetic datasets with 30% asymmetric label noise. Left: Training sets of size
500; Right: Training sets of size 100. RLogReg-F denotes the version of RLogReg with
the gamma matrix pre-set to its correct value.

out (LOO) errors in terms of the error measures defined in Sec. 5.5.3, and we also give the

average number of genes selected by the three methods considered. The results confirm the

expectations. RLogReg that attempts to estimate the gamma table along with all other
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Figure 5.2: Comparison of the magnitude of weights for the 100 features as obtained in
one run of BLogReg and RLogReg respectively, on synthetic data that contains only 3
relevant features (250 training examples in each class, 30% asymmetric label noise). We
see that BLogReg selects too many features whereas RLogReg has a better ability to turn
off the irrelevant ones.

Table 5.3: LOO misclassification (%) on Colon dataset. The average number of selected
genes (± standard deviation) was computed from the CLN runs.

Algorithm LOO-CRT LOO-CLN # Genes
BLogReg 8.06 ± 0.44 7.55 ± 0.64 11.94 ± 0.41
RLogReg 9.68 ± 0.48 9.43 ± 0.66 11.85 ± 0.41
RLogReg-F 4.83 ± 0.35 1.88 ± 0.54 9.21 ± 0.45

parameters is marginally worse than BLogReg (although not statistically significantly

so, according to the unpaired t-test), while RLogReg-F improves over BLogReg in all

validation criteria used, and it also selects a smaller fraction of relevant features.

Figure 5.3 shows the average magnitude of each gene according to BLogReg and

RLogReg-F respectively. These are averages of w estimates across 1000 bootstrap repe-

titions in order to inspect possible systematic differences. These average weights turned

out to be quite similar for BLogReg and RLogReg-F with the exception of a few genes

that had been ranked differently by the two methods. To see this, a summary of top ten

selected genes and their estimated weights are given in Tables 5.4-5.5.
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Figure 5.3: Comparison of the average weights of features selected by BLogReg and
RLogReg-F on the Colon dataset over 1000 bootstrap repeats (50 train/12 test).

Table 5.4: Relative importance of top 10 genes selected by the BLogReg algorithm.
Gene No. Gene Annotation Avg. Magnitude
765 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.4289
377 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.4132
1644 C4-DICARBOXYLATE TRANSPORT SENSOR 0.2618

PROTEIN DCTB (Rhizobium leguminosarum)
1870 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, -0.2435

MITOCHONDRIAL PRECURSOR (HUMAN)
249 Human desmin gene, complete cds. 0.2416
1346 60S RIBOSOMAL PROTEIN L24 (Arabidopsis thaliana) -0.2376
1772 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens) -0.2292
1024 ATP SYNTHASE A CHAIN (Trypanosoma brucei brucei) -0.1356
1482 Human spermidine synthase gene, complete cds 0.1290
1641 Human enkephalin B (enkB) gene, exon 4 and 3’ flank and complete cds -0.1090

Table 5.5: Relative importance of the top 10 genes selected by RLogReg-F algorithm.
Gene No. Gene Annotation Avg. Magnitude
765 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.3988
377 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.3273
249 Human desmin gene, complete cds. 0.3201
1644 C4-DICARBOXYLATE TRANSPORT SENSOR 0.2883

PROTEIN DCTB (Rhizobium leguminosarum)
1870 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, -0.2852

MITOCHONDRIAL PRECURSOR (HUMAN)
1346 60S RIBOSOMAL PROTEIN L24 (Arabidopsis thaliana) -0.2420
1024 ATP SYNTHASE A CHAIN (Trypanosoma brucei brucei) -0.2220
1993 Human hormone-sensitive lipase (LIPE) gene, complete cds -0.2114
493 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus) 0.1325
1772 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens) -0.1224

Results on Breast cancer dataset

We further apply the proposed model on the Breast cancer dataset from West et al.

[2001]. The aim is to discriminate between estrogen positive and estrogen negative ob-
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Table 5.6: LOO misclassification (%) on Breast dataset. The average number of selected
genes (± standard deviation) was computed from the CLN runs.

Algorithm LOO-CRT LOO-CLN # Genes
BLogReg 18.37 ± 0.79 2.50 ± 0.40 9.22 ± 0.58
RLogReg 18.37 ± 0.79 2.50 ± 0.40 9.10 ± 0.63
RLogReg-F 16.33 ± 0.76 0.00 ± 0.29 7.58 ± 0.50
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Figure 5.4: Comparison of the average weights of features selected by BLogReg and
RLogReg-F on the Breast dataset over 1000 bootstrap repeats (39 train/10 test).

servations. According to West et al. [2001], there is biological evidence that the arrays

11,14,16,31,33,40,43,45,46 are mislabelled. However, unlike Colon dataset, we observe the

nature of label flipping in Breast dataset is rather close to symmetric. As a consequence,

mislabelling might do less harm to traditional classifiers in terms of class prediction on

future arrays. Table 5.6 summarises LOO error rates together with the numbers of genes

selected by the classifiers. The picture is quite similar to what we have seen in the case

of Colon, although the differences tend to be smaller since the label noise here is more

symmetric.

We also see that RLogReg did pretty well with a very limited amount of training

data, but of course the difficulty of accurate estimation of the gamma table from such few

points remains an issue. In fact, the estimated gamma table of RLogReg may converge

to identity in such conditions, which statistically will result in a weight vector that is
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Algorithm LOO-CRT LOO-CLN # Genes
BLogReg 9.72 ± 0.41 8.45 ± 0.41 13.66 ± 0.84
RLogReg 9.72 ± 0.41 8.45 ± 0.41 13.21 ± 1.66
RLogReg-F 9.72 ± 0.41 8.45 ± 0.41 13.14 ± 0.76

Table 5.7: LOO misclassification (%) on Leukaemia dataset. The average number of
selected genes (± standard deviation) was computed from the CLN runs.

identical to that of BLogReg. As previously, knowledge of the extent of noise can be

employed here, resulting in a slight improvement for RLogReg-F. Finally, as somewhat

expected, the average magnitude of gene weights from BLogreg and RLogreg-F look very

similar, as shown in Figure 5.4, which was expected by the symmetric nature of the label

noise in this dataset.

Results on the Leukaemia dataset

In addition to the two real gene array datasets, we have also applied the proposed model

to the Leukaemia dataset (Golub et al. [1999]). The aim is to classify acute myeloid

leukaemia (AML) and acute lymphoblastic leukaemia (ALL).

The literature does not indicate any biological evidence that the dataset would con-

tain mislabellings. However, by consensus of previous studies of labelling error detection

algorithms, one gene array was identified as possibly mislabelled.

Hence, label noise modelling is not expected to improve classification performance here

since the gamma table is so close to identity. We give in Table 5.7 the LOO cross validation

error rates together with the number of features selected by the algorithms. We see that

indeed all classifiers achieved the same LOO rates. Figure 5.5 shows the average frequency

with which each gene is selected by BLogReg and RLogReg respectively, as computed from

1000 independent bootstrap repetitions – these also appear to be indistinguishable. This

results in turn are comforting since they imply that the label noise modelling did not

introduce any unwanted side effects when the data had in fact no label noise.
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Figure 5.5: Comparison of the average magnitude of features selected by BLogReg and
RLogReg on the Leukaemia dataset over 1000 bootstraps (58 train/14 test). No artificial
label noise was introduced in this experiment.

Computation time

We should give an indication of the added computation overhead required by our noise

modelling relative to the existing BLogReg. One LOO loop on all datasets considered

took on average 4 seconds for RLogReg, while BLogReg required roughly 0.2 seconds

on an Intel’s Core-i5 3.2 GHz machine. We believe this extra computation time is most

worthwhile especially when the training set size is sufficiently large to exploit the full

potential of the presented approach.

Detecting mislabelled instances

One of the most appealing features of our proposed algorithm is the possibility to detect

mislabelled examples from the data, in addition to classification and gene selection. There

are two types of possible errors: (i) a false positive is when a sample is believed to be

mislabelled despite it is in fact labelled correctly; and (ii) a false negative is when a

sample is believed to be labelled correctly despite its label is in fact incorrect. A good

way to summarise both is by constructing the Receiver Operating Characteristic (ROC)

curves. The area under the ROC curve signifies the probability that a randomly drawn
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and mislabelled example would be flagged by the proposed algorithms. Figure 5.6 shows

the ROC curves for Synth-500 and Colon datasets. Superimposed for reference we also

plotted the ROC curves that correspond to BLogReg. BLogReg considers that all points

have the correct labels, and it has not been designed to spot mislabelled points. The best

we can do is to take that mistakes made on the training points are mislabelling predictions.

From Figure 5.6, we see the gap between the two curves is significant and well apparent

in the experiment on Synth-500. This quantifies the gain that our modelling approach

is able to obtain. The gain for Colon is smaller but still significant, despite the dataset

size is so limited, provided that RLogReg incorporates knowledge about the proportion

of mislabelling (i.e. RLogReg-F).

Comparison with previous findings

In addition to comparisons that quantify the benefits of having a noise model, we compare

our results with previously identified mislabelling in the Colon samples. We conduct 100

bootstrap repetitions drawing subsets of size 50 from the total of 62 points randomly while

imposing that none of the suspects from the literature are left out. In Table 5.8, after

quoting the previous detections from the literature, we report the mislabelling detections

obtained by BLogReg-F and BLogReg respectively, in two forms: (i) from the run that

returned the largest number of detections, and (ii) the percentage that a particular array

was flagged up as a mislabelling during the 100 repetitions.

It is interesting to note that RLogReg-F was able to identify up to 7 mislabelled

points, and these also agree with the majority of previously reported detections using

other algorithms (i.e. for T30, T33, T36, N34 and N36). BLogReg is also able to find up

to 7 mislabelled samples but with fewer true positives and more false positives.

From both figures we see that RLogReg-F is able to identify mislabelled arrays more

often than BLogReg can. Recall that BLogReg has no information about mislabellings,

so for this method we considered a detection when a training point falls on the wrong
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side of decision boundary. On the other hand, the mislabelling detections of RLogReg-F

are based upon its explicit model of label flipping, and computed as in Section 5.3.
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Figure 5.6: Average ROC curves for BLogReg, RLogReg and RLogReg-F on Synth-500
and Colon benchmarks. For consistency with classification result bootstrap is performed
on Synth-500 while LOO is employed to obtain the result for Colon. The prediction is
based on hard-thresholded rule.
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Table 5.8: Identifying mislabelled samples in Colon dataset. The detections for RLogReg-F are based on the hard threshold
rule (p(ỹ 6= y|x,w) ≥ 0.5). The first line is the ‘gold standard’ that is backed up by biological evidence in the literature.

Source Suspects identified Extra samples identified
Alon et al. [1999] T2 T30 T33 T36 T37 N8 N12 N34 N36
Furey et al. [2000] - ◦ ◦ ◦ - ◦ - ◦ ◦
Li et al. [2001] - ◦ ◦ ◦ - - - ◦ ◦
Kadota et al. [2003] ◦ - - - ◦ ◦ - ◦ ◦ T6,N2
Malossini et al. [2006] (RAPIV) - ◦ ◦ ◦ ◦ ◦ - ◦ ◦ N28,N29,N40
Malossini et al. [2006] (PRAPIV) - ◦ ◦ ◦ ◦ ◦ - ◦ ◦ N2,N28
BLogReg ◦ ◦ ◦ ◦ - ◦ ◦ ◦ ◦ T3,T32,N35,N40
BLogReg (%) 1 9 14 63 0 9 18 32 37
RLogReg-F ◦ ◦ ◦ ◦ - ◦ ◦ ◦ ◦ N2,T32,N40
RLogReg-F (%) 4 22 55 79 0 15 15 37 68
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5.6 Summary

We proposed a robust extension of sparse Bayesian logistic regression for classification in

the presence of labelling errors. The numerical experiments suggest that our approach is

superior to its traditional counterpart when the training data contains labelling errors.

Simultaneously, our methods are effective in identifying marker-genes and detecting mis-

labelled data. Since our robust model needs to estimate the label flipping probabilities

together with the parameters of the classifier, it does require more training data to achieve

its full potential. However, in our experience, RLogReg performs statistically no worse

than BLogReg even when the training set sizes are small. The need for more data can

also be relaxed by incorporating knowledge about the extent of label noise.

Even though, the family of robust logistic regression (RLogReg in this chapter, rLR

and rmLR presented in Chapter 4) performs well under mislabelling, one limitation of

these algorithms is that being a linear classifier in nature they cannot cope with nonlinear

dataset. Kernelising the model is the straightforward direction to proceed. However that

will also introduce a problem of selecting kernel’s parameters. As we have pointed out,

cross-validation is not the best solution to model selection problem in noisy label settings.

In the next chapter we will thoroughly investigate how to perform model selection under

label noise. Specifically, we shall study kernel parameter and regularisation parameter

selection for our robust Kernel Logistic Regression model.
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CHAPTER 6

Robust Kernel Logistic Regression

In the previous two chapters we saw that the robust Logistic Regression is effective against

labelling errors. However the model is restricted to linear problems. In real world, of

course, it cannot be guaranteed that all classification problems can be solved using a

linear model. Therefore, it is desirable to extend our approaches to non-linear settings,

which we will do in this chapter.

Since the introduction of the kernel trick, many linear classifiers have been harnessed

with an ability to solve non-linear problems, whereby their usage extends to a wider

range of applications. Generally, deploying a kernel machine also involves determining

good kernel parameters, and Cross-Validation (CV) has long been an established standard

approach. However, when class label noise is present, it becomes unclear why CV would

be a good approach, since all candidate models will be validated against noisy class

labels. The issue has also been briefly discussed in Lawrence and Schölkopf [2001] and

Bouveyron and Girard [2009]. In Lawrence and Schölkopf [2001], the authors resort to

using a ‘trusted validation set’ to select optimal kernel parameters. The trusted set must

be labelled carefully, which seriously restricts the applicability of the method. For example

in crowdsourcing it would be very difficult (if not impossible) to construct such a trusted
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set.

In this chapter we start by straightforwardly formulating a robust Kernel Logistic

Regression (rKLR) as an extension of our robust Logistic Regression (rLR). We present

a simple yet effective algorithm to learn the classifier and investigate whether or not CV

is a reasonable approach for model selection in the presence of labelling errors. As we

shall see, we find that performing CV in noisy environments gives rise to a slightly under-

fitted model. We then propose a robust Multiple Kernel Logistic Regression algorithm

(rMKLR) based on the so-called Multiple Kernel Learning (MKL) framework and the

Bayesian regularisation technique (Cawley and Talbot [2007]) to automate the model

selection step without using any cross validation. From this we obtain improvements in

both generalisation performance and learning speed. The lineage of the robust Logistic

Regression family, which serves as a roadmap of the developments in this chapter, is

summarised in Figure 6.1.

6.1 The robust kernel machine

Consider a set of training samples S = {(xn, ỹn)}Nn=1, where xn ∈ R
M and ỹn ∈ {0, 1}

denotes the observed (possibly noisy) label of xn. Kernel logistic regression produces a

nonlinear decision boundary, f(x), by forming a linear decision boundary in the space of

the non-linearly transformed input vectors. By the representer theorem (Kimeldorf and

Wahba [1971]), the optimal f(x) has the form:

f(x) =
N
∑

n=1

wnκ(·,xn) (1)

where κ(·, ·) is a positive definite reproducing kernel that gives an inner product in the

transformed space.

Denoting by w the parameter vector with entries wn, n = 1, ..., N , we define the
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Figure 6.1: Genealogy of the robust Kernel Logistic Regression and the robust Multi-
Kernel Logistic Regression methods. The highlighted boxes are the classifiers proposed
in this chapter. Note that there are two paths to arrive at the robust Kernel Logistic
Regression.

probability of an observed label ỹn as a linear combination of the probabilities that the

true label of a point is 0 or 1 respectively:

p(ỹ = k|κ(·,xn),w) =
1
∑

j=0

p(ỹ = k|y = j)p(y = j|κ(·,xn),w)

=
1
∑

j=0

γjkp(y = j|κ(·,xn),w) (2)

Again, p(ỹ = k|y = j) are probabilistic factors representing the probability that the true

label j flips into the observed label k. These parameters form a label transition table,

Γ. The full set of parameters for this robust model will be denoted as Θ = {w,Γ}.

Now, fitting the robust kernel logistic regression is equivalent to maximising the following
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log-likelihood:

L(Θ) =
N
∑

n=1

1
∑

k=0

1(ỹn = k) log p(ỹn = k|κ(·,xn),Θ)− ζ
N
∑

n=1

w2
n (3)

where we included an L2 regularisation term to express our preference for a smooth (and

non-sparse) model.

In Eq.(3), the term p(ỹn = k|κ(·,xn),Θ) is defined in Eq.(2), in which we use a sigmoid

function to model the probability of the true label:

p(y = 1|κ(·,xn),w) = σ(wTκ(·,xn)) =
1

1 + exp(−wTκ(·,xn))
(4)

Learning the robust model requires us to estimate the weight vector w as well as the

label-flipping probabilities γjk. To optimise the weight vector, we again employ conjugate

gradients because of its well known computational efficiency, The optimisation technique

basically performs the Newton update step along the direction u = g− uoldν, where g is

the gradient of the log-likelihood w.r.t. the weight vector.

Define P̃ k
n = p(ỹ = k|κ(·,xn),Θ), the gradient is given by:

∇wL(θ) =
N
∑

n=1

[

(

1(ỹn = 1)(γ11 − γ01)
P̃ 1
n

+
1(ỹn = 0)(γ10 − γ00)

P̃ 0
n

)

× σ(wTκ(·,xn))(1− σ(wTκ(·,xn)))× κ(·,xn)
]

− 2ζ
N
∑

n=1

wn (5)

The Hestenes-Stiefel formula, ν = gT (g − gold)/(uold)T (g − gold) is used to calculate the

step length. The update equation for w is then the following:

wnew = wold − gTu

uTHu
u, (6)

where the Hessian matrix H is calculated only once at the first iteration. We should note
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that other schemes such as the Flectcher-Reeves or Polak-Ribère formulae could also be

used.

The following multiplicative update equations are then used to update the elements

of the gamma matrix. These are derived as in Chapter 4 using the method of Lagrangian

multipliers to ensure that the row of the gamma table sums to 1.

γ00 =
γ00
∑N

n=1

[

1(ỹn=0)

P̃ 0
n

(1− σ(wTκ(·,xn))
]

γ00
∑N

n=1

[

1(ỹn=0)

P̃ 0
n

(1− σ(wTκ(·,xn))
]

+ γ01
∑N

n=1

[

1(ỹn=1)

P̃ 1
n

(1− σ(wTκ(·,xn))
] (7)

γ11 =
γ11
∑N

n=1

[

1(ỹn=1)

P̃ 1
n

σ(wTκ(·,xn))
]

γ10
∑N

n=1

[

1(ỹn=0)

P̃ 0
n

σ(wTκ(·,xn))
]

+ γ11
∑N

n=1

[

1(ỹn=1)

P̃ 1
n

σ(wTκ(·,xn))
] (8)

With all the ingredients in place, the learning algorithm is then to alternate between

updating each parameter in turn, until convergence. Given an unseen query point xq, we

predict that ŷq = 1 whenever p(ŷ = 1|κ(·,xq),w) = σ(wTκ(·,xq)) returns a value greater

than 0.5, and ŷ = 0 otherwise. This algorithm to efficiently learn rKLR is summarised

below in Algorithm 6.

Algorithm 6 Optimisation of rKLR
Input: κ, Γ
Initialise w← 0
while Iteration < MaxIteration do
Update w using the gradient in Eq.(5)
Update Γ using Eq.(7) and Eq.(8)

end while
Output: Optimised weight vector, w. Optimised Γ.

6.1.1 Selecting the kernel width: A multi-kernel approach

For any kernel machine, the value of the kernel parameters are critical to the generalisation

performance, and determining these is an important part of the task. Here we focus on

radial kernels for the sake of concreteness. In this case the kernel parameter is the width

of the kernel. A usual way of finding optimal kernel width is by means of cross-validation.

However this technique makes use of class labels of a validation set. It is unclear if this
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would be useful in the noisy labels scenario since the class labels of the validation set are

possibly incorrect.

We propose to employ the Multiple Kernel Learning (MKL) framework 1, giving it a

different purpose. In MKL a combination of several kernels is learnt in order to get a good

representation of the data. We adopt the framework as a method to find optimal kernel

width automatically without performing cross-validation. In contrast to the majority of

MKL literature where the aim is centred around combining heterogeneous data sources

(Pavlidis et al. [2001], Lanckriet et al. [2004]), our adoption of MKL focuses on the com-

bination of multiple kernels that correspond to different notions of similarity, as defined

by different kernel widths. This approach will bypass the need for cross-validation and as

a by-product of this it also speeds up the learning process.

There are several ways to combine kernels. We will use a conic combination, as the

following:

κ(·, ·) =
S
∑

i=1

ηiκi(·, ·) : ηi ≥ 0 : ∀i (9)

Conic combinations represent a popular way to combine kernels. It is less constrained

than a convex combination would be, and the positivity constraint ensures that the kernel

weighting parameters do not cancel out each other. The latter is important since linear

combinations may lead to unstable learning (Damoulas and Girolami [2009]). A convex

combination could also be used but it would require the extra constraint that ηi sums to

unity, which is unnecessary.

In contrast to the case where one is concerned with heterogeneous data sources, we

want η to be sparse for our purpose, in order to select only a few of a set of possible

kernel widths. To implement this idea we use a generalised LASSO-like approach, positing

independent exponential priors to enforce this preference on η. This results in adding a

1an extensive survey in recent advances of MKL is given in Gönen and Alpaydin [2011]
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new regulariser to the objective in Eq.(3) to accommodate the MKL framework:

N
∑

n=1

1(ỹn = 1) log P̃ 1
n + 1(ỹn = 0) log P̃ 0

n − ζ
N
∑

i=1

w2
i −

S
∑

i=1

ξiηi (10)

To ensure positivity, we reparametrise ηi = u2i , and optimise for ui using conjugate gra-

dients method. The derivative of the objective, Eq.(10), w.r.t. ui is given by:

N
∑

n=1

[

(

1(ỹn = 1)(γ11 − γ01)
P̃ 1
n

+
1(ỹn = 0)(γ10 − γ00)

P̃ 0
n

)

× σ(wTκ(·,xn))(1− σ(wTκ(·,xn)))× (wTκi(·,xn))
]

− 2ξiui (11)

We later recover ηi by squaring the optimised ui.

6.1.2 Choosing the regularisation parameters by Bayesian reg-

ularisation

As discussed earlier, everything that involves cross validation is questionable in the pres-

ence of labelling errors. This includes the selection of the regularisation hyper-parameters.

To circumvent the problem, we adopt a Bayesian regularisation technique to automati-

cally determine good values of ζ and ξ := (ξ1, ..., ξS). For this, we consider a Bayesian

interpretation of Eq.(10).

Consider the terms that depend on the parameter w and ζ first. The posterior prob-

ability of w can be expressed as:

p(w|D, ζ) ∝ p(D|w, ξ)p(w|ζ) (12)

The first term on the r.h.s. corresponds to the data likelihood while the second term is our

regularisation term for w. By taking logarithm on both sides of Eq.(12), log p(w|D, ζ) =
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log p(D|w, ξ) + log p(w|ζ) + const., we see that the regularisation term is simply the

negative logarithm of the prior distribution conditioned on ζ, the regularisation parameter.

Therefore, p(w|ζ) = N (0, 1/ζ).

We want to eliminate ζ from the formulation, so we build the model further by putting

a prior on ζ. We choose this to be an exponential distribution because the values of ζ

must be positive: p(ζ|β) = βe−βζ . Here, β is a hyper-parameter, i.e. the inverse scale

of the exponential. This encodes our uncertainty about ζ, and as such, it reflects our

uncertainty about w at a higher level of inference. We used β = 2 in in the reported

experiments to constrain the expected prior variance of w.

With this hyper-prior in place, we can write the marginal prior distribution, p(w) by

integrating out ζ:

p(w) =

∫ ∞

0

p(w|ζ)p(ζ)dζ (13)

Completing the integration by the use of the Gamma integral
∫∞

0
xν−1e−µxdx = Γ(ν)

µν
, we

obtain:

p(w) =

∫ ∞

0

M
∏

i=1

{
√

ζ

2π
e−

ζ

2
w2

i

}

· βe−βζdζ

=
β

(2π)m/2

∫ ∞

0

ζ(m/2+1)−1e−ζ(
1
2

∑M
i=1 w

2
i+β)dζ

=
β

(2π)m/2
Γ(m

2
+ 1)

(1
2

∑M
i=1w

2
i + β)(m/2+1)

(14)

Going back to our objective function in Eq.(10), we now replace w’s the regularisation

term with the negative log of the newly derived marginal prior, and optimise this objective

w.r.t. w. Computing the gradient of this new regularisation term yields:

− ∂ log p(w)

∂w
=

m
2
+ 1

1
2

∑M
i=1w

2
i + β

∂
∑M

i=1w
2
i

∂w
(15)
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and since this has the same form as the gradient of the original regularisation term would,

we read off from Eq.(15) the regularisation parameter as,

ζ =
m
2
+ 1

1
2

∑M
i=1w

2
i + β

(16)

Next we proceed to treat ξi using the same technique of Bayesian regularisation. This

time we are looking for ξi that produces a sparse η, in order to select just a very few

kernel widths. We will employ a regularisation on each component of η. The Bayesian

interpretation of Eq.(10) with respect to η and ξ is given by,

p(η|D,w, ξ) ∝ p(D|η)
S
∏

i=1

p(ηi|ξi) (17)

where we employed independent priors distributions on each ηi. Recall that we constrained

ηi to be non-negative, so a natural choice is to use independent exponential distributions

p(ηi|ξi) = ξie
−ξiηi , and ξi denote the inverse scale parameters of these. These are hy-

perparameters that correspond to the regularisation parameters in the last term of our

objective function Eq.(10).

Again, we want to integrate out the ξi from the formulation, so we build this model

further, positing a hyper-prior on all ξi. These also need to be positive, hence we use

the exponential distribution one more, p(ξi) = ψe−ψξi , and set ψ = 10−100 to a non-

informative hyperprior that will encourage a sparse solution. We obtain the marginal

prior by integration, which gives:

p(ηi) =

∫ ∞

0

ξie
−ξiηi · ψe−ψξidξi

= ψ

∫ ∞

0

ξ
(1+1)−1
i e−ξi(ηi+ψ)dξi = ψ

Γ(2)

(ηi + ψ)2
(18)

Finally, replacing the negative log of this in place of our original regularisation term
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in Eq.(10), re-parametrising ui =
√
ηi and taking derivative of the log of Eq.(18) w.r.t. ui

we have,

− ∂ log p(ηi)

∂ui
=

2

(ηi + ψ)

∂ηi
∂ui

(19)

From here we read off that

ξi =
2

ηi + ψ
(20)

Algorithm 7 summarises the steps to learn our novel “robust Multiple Kernel Logistic

Regression” (rMKLR) model.

Algorithm 7 Optimisation of rMKLR

Input: Set of predefined kernels κi=1:S, Γ
Initialise w← 0, η ← 1, ζ ← 0, ξ ← 0
while Iteration < MaxIteration do
Update w using Eq.(5)
Update ζ using Eq.(16)
Update ηi by optimising ui using Eq.(11) and set ηi = u2i
Update ξ using Eq.(20)
Update Γ using Eq.(7) and Eq.(8)

end while
Output: Optimised weight vector, w. Optimised Γ.

6.2 Empirical evaluation

We conducted extensive experiments to answer three main research questions.

• Firstly, we ask if rKLR improves KLR in terms of robustness against labelling errors

as measured via classification performance. To answer this question, we also study

the relative harm of two common types of label noise: symmetric and asymmetric

noise in non-linear problems.

• Secondly, we ask if MKL can be used to find a suitable kernel parameter in noisy

settings. To answer the second research question we first show that our proposed

MKL for kernel width selection works in a noise-free scenario. We then progress
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to show the comparative performance of rKLR where its kernel width was selected

using 1) CV with a trusted validation set, 2) CV without a trusted validation set

and 3) MKL framework in a noisy setup.

• Thirdly, we ask how the proposed rMKLR compares to robust Kernel Fisher Dis-

criminant (rKFD) (Lawrence and Schölkopf [2001]), to the gold-standard Support

Vector Machine (SVM) and to the Stochastic Programming for Multiple Kernel

Learning (StPMKL) (Yang et al. [2012]). The recently proposed StPMKL is de-

signed to learn from noisy labels by relaxing a deterministic constraint in MKL into

a chance constraint using a binary random variable for each example that indicates

if the class assignment of the example is correct. It has been shown to outperform

state-of-the-art MKL algorithms in noisy setups 1 and MKL formulation of the ro-

bust SVM (Xu et al. [2006]), and hence can be regarded as one of the best MKL

algorithms for noisy labels. SVM is an established classifier which incorporates slack

variables, hence it should be robust to label noise to some extent 2. The rKFD was

included in this comparison because it has been previously found to be effective

in a wide range of noisy non-linear problems (Li et al. [2007]). It is a generative

classifier as opposed to our rMKLR – which is a discriminative classifier – and it is

interesting to compare their performance.

6.2.1 Experimental protocol

In answering these questions, we train the proposed classifier on data where label noise is

created artificially so as to gain better understanding of its effects. We train the model

on the corrupted dataset and evaluate the learnt model using clean test sets. We consider

label noise contamination ranging from 10% up to 40%. We should note that label noise

over 40% is very unlikely to occur in practice as it would mean a very poor labelling close

1StPMKL was compared to Simple MKL (Xu et al. [2010])
2We use LIBSVM (Chang and Lin [2011]) in our reported experiments

124



Data set Training samples Test samples Pos. samples Neg. samples Dimensionality
Banana 400 4900 44.83% 55.17% 2
B.Cancer 200 77 29.28% 70.72% 9
Diabetes 468 300 34.90% 65.10% 8
German 700 300 30.00% 70.00% 20
Heart 170 100 44.44% 55.56% 13
Image 1300 1010 56.95% 43.05% 18
Ringnorm 400 7000 49.51% 50.49% 20
S.Flare 666 400 65.28% 34.72% 9
Splice 1000 2175 44.93% 55.07% 60
Thyroid 140 75 30.23% 69.77% 5
Titanic 150 2051 58.33% 41.67% 3
Twonorm 400 7000 50.04% 49.96% 20
Waveform 400 4600 32.94% 67.06% 21

Table 6.1: Characteristics of the non-linear benchmark datasets.

to random class assignment.

We use 13 UCI benchmark datasets (Rätsch et al. [2001]) in our controlled experiments.

Each problem has been split into 100 train/test realisations except the Image and Splice

datasets where 20 realisations are provided. The characteristics of the datasets used are

summarised in Table 6.1. We later use crowdsourcing and cheaply annotated datasets to

demonstrate real applications of the algorithm in learning from unreliable data sources.

For experiments where cross-validation (CV) is needed, we adopt the ‘best practice’

method described in Cawley and Talbot [2010], where model selection is seen as part of

the learning, and that 5-folds CV is performed independently on each split of the data.

When needed, we set aside 10% of the training data as a trusted validation set, in which all

labels are perfect. We employed a Gaussian Radial Basis Function (RBF) kernel defined

as,

κ(x,xn) = exp

(

−||x− xn||2
σ

)

(21)

in all of our experiments except in the textual entailment recognition task where we used

a linear kernel. For MKL, our multiple kernels set is composed of 21 RBF base kernels

with widths σ in the set {2−10, 2−9, . . . , 210}. This set has a comprehensive coverage of

the range of possible values and we found this level of granularity works well in practice.

An assessment of the sensitivity to this choice will be made in a later section. We also
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use this set of parameter values in the CV experiments, for searches for both the kernel

width and the C parameter in the case of SVM.

6.2.2 KLR versus rKLR

Symmetric versus Asymmetric noise

We start with an illustrative experiment, in which we are interested in finding out which

kind of random noise is more detrimental to the traditional kernel learning. We have

seen that asymmetric noise is more harmful in linear cases. Here we shall find out if

the phenomenon can still be observed in non-linear cases. We train traditional KLR on

data with 30% symmetric and 30% asymmetric noise and present the average classification

errors and standard deviations over 100 repetitions in Figure 6.2. Taking the performance

on clean data to be the baseline result, we see that in 5 datasets symmetric label noise is

more detrimental while for the rest of the datasets asymmetric noise perturbs the classifier

more. Hence, as we see, even symmetric label noise is not always harmless. It is worth

noting also that the effect of label noise is more significant in artificial data that has a

low Bayes error (e.g., Ringnorm and Twonorm) than real world dataset (e.g., S.Flare)

that might possibly already have some inherent label noise.

The advantage of modelling the label noise

Having seen that traditional KLR is not suitable for learning from data with noisy la-

bels, we are now interested to see if incorporating a label noise model helps to improve

classification performance. To this end, we compare KLR to the proposed rKLR. To

eliminate any other factors which could affect the assessment, we defer the use of MKL

with Bayesian regularisation (hereinafter referred to as “the MKL”) until the next sub-

section, and instead here we use CV with a trusted validation set containing correct labels

to select the kernel width parameter for both algorithms. Since we have seen that both

types of label noise are detrimental to the classifiers, we performed this test for both types
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Figure 6.2: Effect of 30% symmetric and asymmetric noise to traditional KLR, compared
against clean baseline.

of noise, and pulled together the misclassification rates computed from 100 independent

splits of the data contaminated with symmetric noise as well as the 100 splits of data

contaminated with asymmetric noise. Table 6.2 summarises the average misclassification

rates, standard deviations and p-values.

We see that KLR is quite robust at low noise case, i.e. 10%. However, as level of

noise increases we see that rKLR substantially improves upon KLR in most of the data

sets used. We observe also that as the degree of mislabelling becomes more severe, the

performance gaps are getting larger. This can be seen in the 30%-40% noise settings. The

improvements are also statistically significant as tested using the Wilcoxon ranksum test

at the 5% level. We may conclude on the basis of these results in Table 6.2 that label
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Dataset
Noise level

10% 20%
KLR rKLR p-value KLR rKLR p-value

Banana 12.28 ± 1.49 12.80 ± 2.10 0.03 14.58 ± 1.96 12.91 ± 2.32 3.21e− 22
B.Cancer 28.96 ± 5.62 31.02 ± 6.20 6.51e− 4 30.19 ± 7.04 32.16 ± 7.82 0.02
Diabetes 24.86 ± 3.09 26.00 ± 3.48 3.05e− 4 26.17 ± 3.17 26.69 ± 4.28 0.79
German 25.07 ± 3.23 26.90 ± 3.46 7.62e− 8 26.64 ± 3.58 27.78 ± 3.66 3.27e− 3
Heart 19.84 ± 6.57 20.34 ± 5.73 0.17 22.31 ± 5.10 20.63 ± 4.76 9.91e− 4
Image 6.58 ± 1.13 6.19 ± 1.52 0.12 8.06 ± 1.12 6.80 ± 1.00 2.79e− 6
Ringnorm 4.51 ± 2.23 3.11 ± 1.78 5.91e− 13 4.94 ± 3.23 3.29 ± 1.86 1.87e− 6
S.Flare 34.45 ± 2.33 34.81 ± 2.83 0.24 35.87 ± 2.70 36.00 ± 2.92 0.96
Splice 14.90 ± 1.47 14.90 ± 1.69 0.89 17.33 ± 1.67 16.82 ± 1.63 0.14
Thyroid 9.25 ± 4.00 7.76 ± 4.28 6.194e− 5 9.56 ± 4.55 8.49 ± 4.60 9.86e− 3
Titanic 22.85 ± 1.33 22.88 ± 1.90 0.63 23.57 ± 2.55 23.30 ± 2.39 0.16
Twonorm 4.69 ± 1.16 3.79 ± 0.78 1.51e− 19 7.82 ± 1.88 4.38 ± 1.20 5.33e− 54
Waveform 12.91 ± 1.52 12.21 ± 1.15 2.22e− 6 15.04 ± 2.18 12.81 ± 1.54 1.05e− 33

Dataset
Noise level

30% 40%
KLR rKLR p-value KLR rKLR p-value

Banana 17.60 ± 2.95 16.13 ± 3.99 7.38e− 7 25.63 ± 6.01 23.08 ± 10.49 1.85e− 5
B.Cancer 32.54 ± 8.29 32.92 ± 9.26 0.87 36.89 ± 10.39 35.52 ± 10.36 0.15
Diabetes 28.67 ± 4.37 27.42 ± 4.56 2.60e− 492 33.77 ± 6.19 31.14 ± 7.03 7.70e− 6
German 30.30 ± 4.86 28.81 ± 4.69 9.78e− 4 33.86 ± 8.42 30.11 ± 4.69 2.19e− 4
Heart 25.82 ± 6.87 26.64 ± 8.15 0.62 34.99 ± 8.76 30.98 ± 11.65 2.34e− 5
Image 12.82 ± 2.10 10.45 ± 3.21 1.20e− 3 20.29 ± 3.78 15.98 ± 7.24 8.48e− 3
Ringnorm 10.06 ± 5.57 9.57 ± 6.00 0.43 16.92 ± 8.78 15.78 ± 9.67 0.11
S.Flare 37.51 ± 4.25 36.82 ± 3.63 0.13 41.04 ± 4.71 38.61 ± 4.37 1.50e− 7
Splice 23.31 ± 1.95 21.20 ± 4.06 0.03 31.20 ± 3.85 26.74 ± 8.49 0.04
Thyroid 13.91 ± 5.99 13.76 ± 8.10 0.24 22.44 ± 11.01 19.16 ± 13.41 8.82e− 5
Titanic 26.77 ± 7.54 25.19 ± 5.55 0.03 34.64 ± 12.49 29.47 ± 11.39 4.18e− 9
Twonorm 10.36 ± 3.53 9.60 ± 6.54 1.17e− 4 22.00 ± 6.16 17.14 ± 13.42 6.19e− 5
Waveform 19.97 ± 3.77 17.37 ± 5.24 4.11e− 10 27.50 ± 5.81 22.86 ± 9.86 3.74e− 8

Table 6.2: The relative performance of KLR and the proposed rKLR. Average errors,
standard deviations, and p-values.
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noise modelling is indeed advantageous in general.

6.2.3 Cross Validation versus MKL with Bayesian regularisation

Results on clean data

In the literature MKL has been used to combine different sources of data. However, here

we adopted the MKL framework to automatically determine a good kernel width. Before

proceeding to our noisy scenarios, we will first establish that the MKL works on clean

data. We present in Table 6.3 the comparative classification results between CV and the

MKL on the clean benchmark datasets.

Data set Cross validated rKLR rMKLR p-value
Banana 10.96 ± 0.81 10.72 ± 0.52 0.06
B.Cancer 29.94 ± 4.65 27.73 ± 4.19 9.17e− 4
Diabetes 24.53 ± 2.21 24.24 ± 1.85 0.47
German 25.38 ± 2.63 23.52 ± 2.26 2.09e− 7
Heart 18.63 ± 4.00 16.30 ± 3.39 7.48e− 5
Image 3.73 ± 0.71 5.65 ± 0.96 2.78e− 6
Ringnorm 1.80 ± 0.43 1.48 ± 0.10 4.16e− 12
S.Flare 33.50 ± 2.15 34.33 ± 1.75 1.05e− 3
Splice 11.47 ± 0.82 13.30 ± 1.13 7.52e− 6
Thyroid 5.96 ± 2.78 5.91 ± 2.70 0.95
Titanic 22.26 ± 0.94 22.73 ± 0.83 4.28e− 5
Twonorm 2.86 ± 0.36 2.47 ± 0.16 4.58e− 17
Waveform 10.78 ± 0.85 10.58 ± 0.45 0.03

Table 6.3: Comparison between standard cross validation and MKL with Bayesian regu-
larisation technique on clean datasets.

From Table 6.3, we see that the MKL is effective in choosing a good representation of

the data, i.e. a good kernel width. We see that the difference between CV and Bayesian

regularisation – albeit statistically significant in favour of the latter in 6 out of 13 cases

– is small (mostly within <1%) in all cases. This clearly confirms that the MKL with

Bayesian regularisation is a both effective and efficient way to automate the process of

kernel width selection. It is worth noting that the results from these two robust classifiers

are slightly worse than the traditional KLR (c.f. Cawley and Talbot [2008]) when the

labels are actually perfect. This is due to the presumption of label noise of the robust

model.
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Figure 6.3: Cross validation for kernel width selection on different validation sets versus
MKL with Bayesian regularisation.

Results on noisy data

We now move on to more challenging noisy settings. We compare the MKL against CV

in a scenario where label errors are present. We shall focus on two aspects, firstly how

label noise affects CV based model selection, and secondly how does the MKL compare

to CV in this setup. We artificially inject 30% random symmetric and asymmetric noise

into the training sets, while keeping the test sets clean. We compare the performance of

the proposed model in which the kernel widths were selected using: (1) CV on a trusted

validation set (2) CV on noisy validation set (3) MKL with Bayesian regularisation. Figure

6.3 reports the mean errors and standard deviations from 100 repetitions.

Interestingly, we observe negligible difference between doing CV on the originally noisy
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Figure 6.4: Comparison of the medians of the kernel widths selected using clean data and
two types of label noise at 30% level, averaged over all data splits. Cross validation was
done using noisy validation set

validation versus doing CV on a trusted validation set. More surprisingly we notice that

CV on noisy data sometimes produces better results than on the trusted validation set

– for example in the S.Flare dataset. We conjecture these datasets might originally

already contain some label noise. However, the MKL performs better than the others in

general. To better understand why CV on noisy validation set is still as good as CV on

trusted validation set, we show in Figure 6.4 plots of kernel widths for each dataset from

100 random data splits, where all labels are clean (top), symmetric noises are presented

(middle) and asymmetrically noises are presented (bottom). In the noisy scenarios we

used noisy validation set to select kernel widths.

Figure 6.4 reveals that in the case of asymmetric noise the medians of the kernel widths
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tend to be larger than the ones chosen using clean data while in the symmetric case the

widths are mostly in the same proximity as the widths from the clean data. Having a

larger width means a wider Gaussian basis function, that is a slight underfitting effect.

In the case of rKLR, as tested, it is still legitimate to have a slightly wider width as those

points with suspicious labels will likely be flagged as wrong label samples. Consequently

CV on noisy labels should not deteriorate classification performance much compared to

an idealised CV on trusted validation set – although CV is of course computationally

more costly than MKL, as demonstrated in the sequel.

Comparison of the computation time of MKL vs CV

To assess the relative computation time of these methods, we report in Table 6.4 the

average running times for a single training/testing split for each data. As we can see,

MKL with Bayesian regularisation is approximately 5 to 10 times faster than standard

CV.

Dataset
CPU time (seconds)

Dataset
CPU time (seconds)

rKLR rMKLR rKLR rMKLR
Banana 48.44 ± 6.13 10.16 ± 0.28 S.Flare 1033.25 ± 66.55 26.73 ± 0.74

B.Cancer 26.61 ± 0.90 2.96 ± 0.25 Splice 245.61 ± 1.68 64.12 ± 1.36

Diabetes 151.78 ± 44.26 14.84 ± 0.42 Thyroid 23.04 ± 1.25 1.64 ± 0.29

German 192.84 ± 54.27 31.63 ± 3.34 Titanic 15.81 ± 1.74 1.68 ± 0.12

Heart 24.23 ± 0.93 2.15 ± 0.09 Twonorm 49.19 ± 0.81 10.75 ± 0.36

Image 1218.50 ± 451.54 106.99 ± 1.41 Waveform 49.69 ± 1.03 10.07 ± 1.14

Ringnorm 51.21 ± 0.78 10.54 ± 0.34

Table 6.4: Running times on a 2.67GHz Intel Core i5 CPU averaged over 10 random
splits. The MKL (rMKLR) is 5 to 10 times faster than the traditional CV approach.

Assessing the sensitivity of rMKLR to the number of kernel width choices

Throughout we have used the set of 21 kernel width values to select from in the above

experiments. It is then interesting to see how the number of kernels in this set would

affect the performance of the proposed technique. To this end, we fix the range of the

kernel width choice to the interval [2−10, 210] as before, but vary the number of available

kernel width choices within this range from 11 up to 81. We inject a mix of symmetric
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Figure 6.5: Comparison of the different kernel set size at 30% level, averaged over 100
random runs.

and asymmetric noise at 30% level into the training sets and validate the model on clean

test sets. The results are given in Figure 6.5 and show that although the classification

performances vary somewhat as the size of the set of kernel width choices varies, the

differences in most cases are marginal, with the standard error bars are substantially

overlapping. This clearly demonstrates that the number of kernels in the kernel width

set has a small effect on the classification performance and we are free to choose any

reasonable configuration. However one has to bear in mind that having larger kernel set

means a longer training time.
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6.2.4 Comparisons with state-of-the-art classifiers

In our final controlled experiment, we compare rMKLR to three state-of-the-art classifiers:

rKFD , the SVM and the model-free method of StPMKL. The comparison with rKFD

allows us to see comparative performance between generative and discriminative model

in noisy settings. We compare with SVM to find out to what extent class label noise

could be considered to be a normal part of any classification problem and conversely, to

what extent it actually needs the special treatment that we developed in the previous

sections. The comparison with StPMKL will give insight into how does our simple mod-

elling assumptions about the label flipping process compare with the model-free approach

in StPMKL.

rMKLR versus rKFD versus SVM

To make a fair comparison of our rMKLR to its generative counterpart rKFD, as well as

the ‘gold standard’ SVM, the kernel widths for rKFD and SVM (and additionally SVM’s

C parameter) were selected using CV without a trusted validation set. We perform 100

independent repeated experiments for symmetric and asymmetric noise which ultimately

gives us 200 repetitions in total, and we do this at 10% and 30% levels of label noise

contamination. Table 6.5 summarises our findings. We observe rMKLR substantially

outperformed the rKFD in 5 out of 13 data sets at 10% noise and constantly dominates

as noise level increases. The finding is also statistically significant as tested by Friedman

+ Nemenyi post-hoc test. We observe that the difference between the rank of the two is

larger than the critical difference value. It is thus apparent that, as far as classification

is concerned, a discriminative classifier such as rMKLR has an edge over rKFD. The

SVM is doing very well as a straight-out-of-the-box classifier. There is no doubt that

slack variables play an important role in SVM’s robustness. Even though the difference

between rMKLR and SVM is not statistically significant, rMKLR seems to perform better
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in higher noise case.

Dataset
10 % noise 30 % noise

rKFD SVM rMKLR rKFD SVM rMKLR
Banana 12.39 ± 1.13 11.55 ± 1.07 11.39 ± 0.79 20.42 ± 6.07 17.63 ± 5.21 14.92 ± 2.83
B.Cancer 28.71 ± 4.81 27.90 ± 5.05 27.93 ± 4.50 33.50 ± 8.21 32.95 ± 8.39 32.36 ± 8.98
Diabetes 27.15 ± 2.51 24.21 ± 2.07 24.56 ± 2.00 34.47 ± 4.77 29.60 ± 3.94 26.87 ± 3.75
German 26.93 ± 2.64 24.73 ± 2.57 24.12 ± 2.38 32.34 ± 4.56 29.80 ± 4.11 27.75 ± 4.68
Heart 18.96 ± 4.10 17.60 ± 3.92 17.27 ± 3.48 26.50 ± 9.18 25.31 ± 8.21 23.49 ± 8.69
Image 5.25 ± 0.88 4.95 ± 0.85 6.09 ± 1.19 12.41 ± 3.00 10.24 ± 2.33 10.31 ± 3.12
Ringnorm 2.32 ± 0.44 1.84 ± 0.49 2.20 ± 0.48 6.88 ± 2.33 3.24 ± 1.95 4.51 ± 2.43
S.Flare 35.37 ± 1.91 34.25 ± 2.24 34.93 ± 1.96 38.51 ± 4.12 38.65 ± 4.21 37.08 ± 3.77
Splice 15.09 ± 1.47 13.12 ± 1.14 15.11 ± 1.80 29.89 ± 5.52 21.46 ± 2.34 26.98 ± 6.61
Thyroid 7.07 ± 3.96 6.03 ± 3.13 6.15 ± 2.75 15.93 ± 8.76 12.65 ± 7.99 8.87 ± 8.89
Titanic 24.22 ± 2.23 22.88 ± 1.27 23.00 ± 1.12 29.25 ± 8.86 27.80 ± 8.36 28.12 ± 7.41
Twonorm 2.61 ± 0.29 2.88 ± 0.52 2.91 ± 0.36 3.08 ± 1.48 5.38 ± 2.57 4.42 ± 1.77
Waveform 12.82 ± 1.40 11.12 ± 1.06 10.93 ± 0.76 19.75 ± 3.38 16.40 ± 3.33 14.15 ± 2.39
Average rank 2.6923 1.3846 1.9231 2.7692 1.8462 1.3846
p-value 0.0036 0.0016
Nemenyi CD 0.9190

Table 6.5: Comparative performance of rKFD and SVM by CV and the proposed rMKLR.
Average errors, standard deviations and average ranks from Friedman test at 5% level are
reported.

rMKLR versus StPMKL

As a final experiment, before diving into real applications, we compare our rMKLR to the

model-free multiple kernel learning algorithm for noisy labels called StPMKL. We follow

the experimental protocol discussed in Xu et al. [2010] and Yang et al. [2012] to generate

multiple RBF kernels with 10 different widths {2−3, 2−2, . . . , 26} for individual features

as well as for all features, leading to S = 10(m + 1) kernels in total for each dataset –

where m is the dimensionality of the data. In addition to the Heart dataset from the 13

benchmark datasets we analysed before, we use Ionosphere and Australia datasets from

UCI repository in this experiment so that we can compare directly with quoted results

for StPMKL. We perform 20 repetitions using 80% train and 20% test random split. The

statistics of the datasets used in this experiment are summarised in Table 6.6.

Figure 6.6 shows the classification accuracy of the algorithms with label noise levels

varied from 0% to 40% on the three datasets. The results for StPMKL are quoted from

Yang et al. [2012]. We observe that the performance of rMKLR is similar to that of
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Data set # of Examples Dimensionality # of Kernels
Ionosphere 351 34 350
Heart 270 13 140
Australia 690 14 150

Table 6.6: Characteristics of the datasets used in the comparison between the MKL
algorithms rMKLR and StPMKL.
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Figure 6.6: Comparison of classification accuracy (ACC) with noise level ranging from
0% to 40%.

StPMKL when there is either (i) no label noise or (ii) mild label noise, but StPMKL

tends to perform better when the label noise level is high. However, we suspect that the

experimental procedure that generates multiple kernels for each feature is not particularly

suitable for rMKLR due to the sparsity promoting regularisation that the algorithm used.

We then repeat the experiment with multiple kernels generated from full-length input

vectors (not each feature individually). The results, denoted as ‘rMKLR*’, turn out

to be very interesting. We observe significant boost in classification accuracy and see

that rMKLR* outperforms StPMKL in almost all cases. The results also demonstrate

convincingly that a model-based approach does not over-simplify the label noise problem

and it is practically useful.

6.2.5 Real applications

Recognising Textual Entailment

For the first real world problem, we test the proposed method on a variant of the PASCAL2

competition data discussed in Snow et al. [2008] and Raykar et al. [2010]. The dataset
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contains 800 sentence pairs. An annotator was asked if the second sentence follows from

the first sentence. There are 164 distinct annotators in total, of which only one annotator

has labelled all sentence pairs. On average an annotator has completed 53 out of 800 pairs

which results in a sparse 800×164 matrix. Apart from that, the actual ground truths are

also given. The task is to estimate and predict the ground truths using a varying number

of annotators. For this type of task, majority voting has long been a standard approach

but Raykar et al. [2010] has already demonstrated that we can do better. This is apparent

in our results too. We measure the accuracy of the estimated ground truth while varying

the number of annotators, at which point we perform 100 independent random repetitions.

The overall results together with those quoted from Raykar et al. [2010] are summarised

in Figure 6.7.
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Figure 6.7: Accuracy versus number of annotators in Textual Entailment recognition task.
Each result is obtained by 100 independent draws without replacement from the total of
164 annotators.

We find that rMKLR uses fewer annotations to achieve the same accuracy as the

majority voting. We further observe that rMKLR outperforms the EM-algorithm based

approach (as employed in Raykar et al. [2010]) when limited annotations are provided.
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This is because the model discussed in Raykar et al. [2010] is formulated such that each

annotator has their own gamma matrix whereas ours employs a single gamma matrix.

The advantage of having separate gamma matrices is to be able to assess the quality of

each annotator separately, but the algorithm inevitably requires more labels in order to

perform well. A single gamma matrix, however, suffers less from scarcity of labels but

has to pay the price when more labels become available.

Image classification using cheaply acquired labelled data

In this part of the experiment we will use the raw data fromWebsearch dataset introduced

in Chapter 4. We shall restate the problem for the sake of readability and completeness.

Suppose we were to train a classifier to recognise images that contain a bike. The standard

machine learning approach is to collect training images representing ‘bike’, as well a

counterexamples, and laboriously label each of them. Here, we suggest that we could

reduce human intervention and obtain the training data cheaply using annotated data

from search engines. By searching for images using the keyword ‘bike’ and ‘not bike’,

we obtain a set of images that are loosely categorised into ‘bike’ class versus ‘not bike’

class. This allows us to acquire a large number of training data quickly and cheaply. The

problem is of course that the annotations returned by the search engine are somewhat

unreliable. Here we demonstrate that the proposed model is useful in such circumstances.

We collected 515 images using the keyword ‘bike’ and 515 images using the keyword ‘not

bike’ from Google. We also manually labelled all images, but will not use these labels

for training. The manual labels were determined as the following: a ‘bike’ image is one

that contains a bike as its main object and we make no distinction between a bicycle and

a motorbike. Everything else is labelled as ‘not bike’. This reveals 83 flips from ‘bike’

to ‘not bike’ images and 100 flips from ‘not bike’ to ‘bike’ relative to the labels from the

search engine. The manually labelled set is only used for testing purposes.

The images are passed through a series of pre-processing steps, which have some subtle
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differences from the steps used in Chapter 4. Here, we engineer the preprocessing steps

to take the full advantage of the MKL. We extracted a meaningful visual vocabulary

using dense SIFT (Lowe [1999]), then extracted texture information using Local Binary

Pattern (LBP) (Ojala et al. [2002]), and finally extracted Pyramid Histogram of Oriented

Gradients (PHOG) descriptors (Dalal and Triggs [2005]). Having three distinct types of

features allows us to exploit the original idea behind MKL where heterogeneous data are

combined. We construct 21 RBF base kernels for each types of feature, which results in

63 base kernels in total. We employ rMKLR to learn logistic regression parameters as

well as the combination of kernels.

We repeated 100 independent bootstrap classification experiments using 80/20 ran-

dom splits and employed KLR, rMKLR and additionally linear rLR to perform the task

comparatively. The rMKLR attains an average generalisation error of 14.19% ± 0.02

while traditional KLR and linear rLR lag behind. This result is summarised in Table

6.7, and highlights the advantage of our new robust kernel machine and how badly KLR

was affected by label noise. A subset of classification results from rMKLR are depicted

in Figure 6.8 and Figure 6.9 for visual inspection. We see that rMKLR is able to detect

mislabelled instances effectively. On the basis of these results we believe that there is high

potential for learning from unreliable data from the Internet using the label-noise robust

algorithm proposed.

Classifier rLR KLR rMKLR
Error rate 18.17% ± 0.02 21.44% ± 0.03 14.19% ± 0.02

Table 6.7: Comparative results between rMKLR, KLR and linear rLR on the noisy label
image classification task. The proposed rMKLR is the best performer. Interestingly,
linear rLR also outperforms the traditional KLR.
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Agreed: Bike P: Bike, L: NotBike Agreed: Bike P: Bike, L: NotBike Agreed: Bike

Agreed: Bike Agreed: Bike Agreed: Bike Agreed: Bike Agreed: Bike

Figure 6.8: Examples of positive class (‘Bike’) predictions sorted by their posterior prob-
ability. Boxed images illustrate disagreement between the classifier (denoted as P) and
the provided labels from Google (denoted as L).

Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike

P: NotBike, L: Bike Agreed: NotBike Agreed: NotBike Agreed: NotBike P: NotBike, L: Bike

Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike

Figure 6.9: Examples of negative class (‘NotBike’) predictions sorted by their posterior
probability. Boxed images illustrate disagreement between the classifier (denoted as P)
and the provided labels from Google (denoted as L).
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6.3 Extension to multi-class problems

The proposed multi-kernel approach with Bayesian regularisation technique can be straight-

forwardly extended to a multi-class problem. In multi-class setting, where ỹ ∈ {1, . . . , K},

the class posterior of the true label is typically modelled by the softmax function

p(y = k|κ(·,xn),wk) =
exp(wT

k κ(·,xn))
∑K

j=1 exp(w
T
j κ(·,xn))

(22)

Using this we can write the likelihood of the observed label as the following:

p(ỹ = k|κ(·,xn),Θ) =
K
∑

j=1

γjkp(y = j|κ(·,xn),wj) (23)

which brings us to the objective of the ‘robust Multi-Class Multi-Kernel Logistic Regres-

sion’.
N
∑

n=1

K
∑

k=1

1(ỹn = k) log P̃ k
n −

K
∑

k=1

ζk

N
∑

n=1

w2
nk −

S
∑

i=1

ξiηi (24)

The optimisation of the objective proceeds in the same way as in the binary case by using

a conjugate gradient method. The gradient of the objective w.r.t. wc is given by:

g
wc

=
N
∑

n=1

K
∑

k=1

1(ỹn = k)

P̃ k
n

(

∑K
j=1(γck − γjk)e(w

T
j κ(·,xn))

)

e(w
T
c κ(·,xn)) · κ(·,xn)

(

∑K
l=1 e

(wT
l
κ(·,xn))

)2 − ζc
N
∑

n=1

w2
nc

(25)

And w.r.t. ui =
√
ηi:

gui =
N
∑

n=1

K
∑

c=1

K
∑

k=1

1(ỹn = k)

P̃ k
n

(

∑K
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T
j κ(·,xn))

)

e(w
T
c κ(·,xn))(wT

c κi(·,xn))
(

∑K
l=1 e

(wT
l
κ(·,xn))

)2 − 2ξiui

(26)
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Since we treat weight vectors of each class separately, the regularisation parameters can

then be determined using Eq.(20) and Eq.(11) without the need of modification. Fur-

ther, the estimates of the elements of the flip matrix γjk can be obtained by efficient

multiplicative update equations:

γjk =
1

C
× γjk

N
∑

n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)

∑K−1
l=0 e(w

T
l
xn)

(27)

where the constant term C equals
∑K−1

k=0 γjk
∑N

n=1
1(ỹn=k)

P̃ k
n

e
(wT

j xn)

∑K−1
l=0 e

(wT
l
xn)

.

6.4 Summary

We proposed a novel algorithm to learn a label-noise robust Kernel Logistic Regression

model. The essence of the algorithm is a novel model selection approach where the

optimal hyper-parameters are automatically determined using multiple kernel learning

and Bayesian regularisation techniques. The experimental results show that the latent

variable model used is robust against mislabelling while the proposed learning algorithm

is faster and has superior predictive abilities than traditional approaches. In comparisons

with three state-of-the-art kernel machines in controlled settings we observed significant

improvements over the previously existing Kernel Fisher Discriminant classifier and even

the Multiple Kernel Learning algorithm developed specifically for noisy labels. Finally,

we demonstrated real-world applications to learning from crowd-sourcing data, learning

from cheaply obtained but unreliable annotated data.
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CHAPTER 7

Ensemble of Robust Classifiers

So far, we have only studied the performance of a single robust classifier. In this chapter

we will take a step forward to study the performance of the proposed robust classifiers

collectively. We will employ a boosting-type ensemble method called AdaBoost in this

study. It is well known to practitioners that boosting is sensitive to label noise. The issue

stems directly from the fundamental concept of boosting in that the effort is directed

towards classifying the difficult samples. In fact, the complexity of traditional boosting is

very high, so much so that for a dataset with any configuration of its labels, it is possible

to draw a decision boundary with zero training error. This seems to be a good approach

to the classification problem if the difficult samples are not mislabelled samples in the

first place.

We shall investigate the solution to boosting in the presence of label noise at two dif-

ferent levels. At the lower level we study the robust committee where robust classifiers are

combined and boosted using existing AdaBoost algorithm. At the higher level, we propose

a new robust boosting algorithm that we call ‘rBoost’ where the objective function is a

convex combination of two exponential losses. The coefficients of the combination repre-

sent uncertainty in the observed labels. The new boosting algorithm is closely related to
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AdaBoost and requires a relatively minor modification to the existing algorithm. More-

over, the study of the robust boosting will enable us to verify our hypothesis regarding

the limitation of the robustification technique.

7.1 A robust base learner

In recent years many classifiers have been introduced to tackle the problem of learning in

the presence of label noise. To date, there are a number of classifiers developed specifically

for dealing with label noise: robust logistic regression, robust Fisher discriminant analysis,

robust Gaussian Process (Hernández-Lobato et al. [2011]) or robust Nearest Neighbours

(Barandela and Gasca [2000]). All of these can potentially be used as a base classifier, and

it is then interesting to see how would such classifiers behave collectively in an ensemble.

One way to construct a robust classifier is through a probabilistic latent variable model.

Under the latent model, a robust classifier attempts to learn a posterior probability of the

true labels via the likelihood of the observed labels.

Recall from previous chapters that the likelihood of the observed label ỹ of a point xn

given the current parameter setting is defined as the following:

P̃ k
n = p(ỹ = k|xn, θ, {ωjk}1j,k=0) =

1
∑

j=0

ωjkp(y = j|xn, θ) (1)

that is, a linear combination of the ‘true’ class posteriors. We will use ω to represent label

flipping probability of a base learner and reserve γ for representing label flipping coefficient

in the new robust boosting that will be introduced shortly. From this assumption the

modified log-likelihood is given by

L(θ,Ω) =
N
∑

n=1

1
∑

k=0

1(ỹn = k) log(P̃ k
n ) (2)

Note that any probabilistic classifier yielding class posterior probability will fit the frame-
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work and can be converted into a robust classifier using the technique shown. For the

sake of concreteness we will employ logistic regression with parameter θ = β in this study.

Recall from Chapter 4 that the likelihood of ỹ = 1 is defined as:

P̃ 1
n = ω11σ(β

Txn) + ω01(1− σ(βTx)n) (3)

Here, β is the weight vector orthogonal to the decision boundary and it determines the

orientation of the separating plane and σ(a) = 1/(1 + exp(−a)) is the sigmoid function.

Learning robust logistic regression model involves estimating β and well as ωjk. We will

follow the steps presented in Chapter 4 where the conjugate gradient method is used to

optimise β. The gradient of the log-likelihood w.r.t. the weight vector is

N
∑

n=1

[

(

ỹn(ω11 − ω01)

P̃ 1
n

+
(1− ỹn)(ω10 − ω00)

P̃ 0
n

)

σ(βTxn)(1− σ(βTxn))xn
]

(4)

The following multiplicative updates are then used to estimate γjk:

ω10 =
g10

g10 + g11
, ω11 =

g11
g10 + g11

(5)

ω00 =
g00

g00 + g01
, ω01 =

g01
g00 + g01

(6)

where

g11 = ω11

N
∑

n=1

(

ỹnσ(β
Txn)

P̃ 1
n

)

g10 = ω10

N
∑

n=1

(

(1− ỹn)σ(βTxn)
P̃ 0
n

)

g01 = ω01

N
∑

n=1

(

ỹn(1− σ(βTxn))
P̃ 1
n

)
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g00 = ω00

N
∑

n=1

(

(1− ỹn)(1− σ(βTxn))
P̃ 0
n

)

7.2 The robust boosting

Suppose we have a training set with corrupted labels S = {(xn, ỹn)}Nn=1, where xn ∈ R
m

and ỹn ∈ {+1,−1}. Let a base hypothesis be a decision function h : x → ỹ. Under the

boosting framework, a final hypothesis is a linear combination of the base hypotheses and

it takes the following additive form:

H(x) =
T
∑

t=1

αtht(x) (7)

In boosting, the 0/1 misclassification loss incurred by the final hypothesis is measured by

the exponential loss:

N
∑

n=1

1(ỹn = 1)e−H(xn) + 1(ỹn = −1)eH(xn) (8)

This forms a boosting objective that has to be optimised. However, in the situation where

labels are contaminated the loss in Eq.(8) is not ideal, for obvious reasons. Instead, we

form a new objective which explicitly takes into account uncertainties in labels:

N
∑

n=1

1(ỹn = 1)
{

γ00e
−H(xn) + γ01e

H(xn)
}

+ 1(ỹn = −1)
{

γ11e
H(xn) + γ10e

−H(xn)
}

(9)

Here, γjk = p(ỹ = k|y = j) are probabilistic factors representing uncertainties in labels.

Intuitively, the loss is weighed up or down depending on the gamma parameters γjk. For

example, γ01 = 0.3 and γ10 = 0 indicates the situation where labels in the negative class

(or class 0) are all correct – because no flipping from positive to negative occurred – but

labels in the positive class are contaminated. Accordingly, the new loss accounts for this
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by adjusting the loss for the positive class (class 1) to: 0.7 ∗ e−H + 0.3 ∗ eH . This is a

hyperbolic cosine with the two tails adjusted and it represents the modified loss associated

with the positive class. The shapes of such modified loss functions are depicted in Figure

7.1. From the figure we see that the classification that is ‘too correct’ will be penalised,

hence reducing the overfitting problem. Meanwhile the loss of the negative class (class 0),

which is eH +0 ∗ e−H = eH , reduces to traditional boosting. It may be interesting to note

that a similar shape of the loss can also be obtained by truncating the Taylor expansion

of the exponential function to some finite degree. This could also be used to implement

the same idea, although it would not have the transparent formulation given above.

−3 −2 −1 0 1 2 3 4
0

20

40

60

x

f(
x)

 

 

exp(x)
0.9*exp(x)+0.1*exp(−x)
0.7*exp(x)+0.3*exp(−x)

Figure 7.1: Various setups of the Γ and theirs associated loss shape.

7.2.1 Adding a new base learner

Consider the case when ỹ = 1, define d00 = e−H(x) and d01 = eH(x). Likewise, when

ỹ = −1 define d11 = eH(x) and d10 = e−H(x) to be an unnormalised distribution of the

data (xn, ỹn). It can be shown that at the iteration t of boosting, minimising the loss in

Eq.(9) w.r.t. the new ht(x) is equivalent to minimising the following (derivation details

are given in the Appendix A.1):
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argmin
h,α

2 sinh(α)
N
∑

n=1

{

wn1(h(xn) 6= ỹn)
}

+ e−α
N
∑

n=1

{

1(ỹn = 1)w00 + 1(ỹn = −1)w11

}

+ eα
N
∑

n=1

{

1(ỹn = 1)w01 + 1(ỹn = −1)w10

}

(10)

where

wn =















(w00 − w01), if ỹn = +1.

(w11 − w10), if ỹn = −1.
(11)

and

wjk = γjk · djk (12)

From this, it is immediate to see that in order to minimise the loss we have to seek for ht(x)

that minimises the misclassification error ǫt =
∑N

n=1wn1(ỹn 6= h(x)). The step is identical

to the traditional AdaBoost except that the misclassification error of the current classifier

is measured against different weighting factors which take into account the uncertainty of

the observed noisy label as indicated by γjk. Note that the expression is fully compatible

with the traditional AdaBoost such that the rBoost reduces to the original AdaBoost when

γ01 = 0 and γ10 = 0. We emphasise that the weights in rBoost need not be normalised. In

fact, in the original AdaBoost the normalisation simply facilitates the algebra in deriving

a closed-form update for αt.
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7.2.2 Updating the weight of base learner

Now in our case, to get the update for αt we take derivative of Eq.(10) w.r.t. αt, equate

it to zero:

2 cosh(α)
N
∑

n=1

{

wn1(h(xn) 6= ỹn)
}

− e−α
N
∑

n=1

{

1(ỹn = 1)w00 + 1(ỹn = −1)w11

}

+ eα
N
∑

n=1

{

1(ỹn = 1)w01 + 1(ỹn = −1)w10

}

= 0 (13)

Unfortunately, this equation cannot be solved in closed form. We thus resort to numerical

optimisation to solve for the αt. Note that the term which is multiplied by 2 cosh(α) is

nothing but our error ǫt defined earlier.

7.2.3 Updating the weight of data point

Next, to derive the update for the weight vectors, recall that we define wjk = γjke
−ỹnH(xn).

It follows, for example, that the update for w00 can be written as:

wt+1
00 = γ00e

−ỹn(H+αh)

= γ00e
−ỹnH · e−ỹnαh

= γ00d
t
00 · eα(21(h(xn) 6=yn)−1)

= γ00d
t
00 · e2α1(h(xn) 6=1) · e−α

∝ γ00d
t
00 · e2α1(h(xn) 6=1) (14)
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Since e−α are shared among all wjk it does not affect the optimisation. We also used a

simple trick: −ỹh = 21(h(x) 6= ỹ)− 1. Similarly for the rest of the weight vectors we get:

wt+1
01 = γ01d

t
01 · e2α1(h(xn) 6=−1) (15)

wt+1
11 = γ11d

t
11 · e2α1(h(xn) 6=−1) (16)

wt+1
01 = γ10d

t
10 · e2α1(h(xn) 6=1) (17)

One way to implement this is to keep the distribution djk separately and multiply it by

γjk to get a new wjk in each iteration.

7.2.4 Updating the label flipping probabilities

At last, we would also like to estimate the label flipping coefficients, γjk. We could take

derivative of the loss incurred by the current ensemble, Eq.(9), w.r.t. each gamma and

try to solve this directly. This did not yield satisfactory results in our experience, most

likely because the loss lacks probabilistic semantics. The workaround is to convert the

output of boosting i.e. H into a probability. There are three popular approaches to do

that: 1) Logistic calibration p(y = 1|x, H) = 1/(1 + exp(−H)) (Friedman et al. [1998]),

2) Platt’s calibration p(y = 1|x, H) = 1/(1 + exp(AH + B)) where A and B need to be

learnt (Platt [1999]), and 3) Isotonic Regression (Robertson et al. [1988]). Niculescu-Mizil

and Caruana [2005] empirically shows that Platt’s technique and Isotonic regression are

superior to a simple logistic transform. In addition, Platt’s method has a slight advantage

over IsoReg on small sample size. Hence, in this study, we will employ Platt’s method to

get calibrated posterior probabilities.

By converting H to p(y = 1|x, H), we can estimate the gamma from the following

binomial log-loss, or cross-entropy. Using the notation P (x) = p(y = 1|x, H) and P̄ (x) =

150



1− P (x), this is:

−
N
∑

n=1

1(ỹn = 1) log
{

γ11P (xn) + γ01P̄ (xn)
}

+ 1(ỹn = −1) log
{

γ00P̄ (xn) + γ10P (xn)
}

(18)

Following the Lagrangian method which imposes γ00 + γ01 = 1 and γ11 + γ10 = 1, and

following the derivation in Chapter 4, the multiplicative updates for γjk are found to be:

γ10 =
g10

g10 + g11
, γ11 =

g11
g10 + g11

(19)

γ00 =
g00

g00 + g01
, γ01 =

g01
g00 + g01

(20)

where

g11 = γ11

N
∑

n=1

(

1(ỹn = 1)Pn
γ11Pn + γ01P̄n

)

g10 = γ10

N
∑

n=1

(

1(ỹn = −1)Pn
γ10Pn + γ00P̄n

)

g01 = γ01

N
∑

n=1

(

1(ỹn = 1)P̄n
γ11Pn + γ01P̄n

)

g00 = γ00

N
∑

n=1

(

1(ỹn = −1)P̄n
γ10Pn + γ00P̄n

)

The new rBoost algorithm is summarised in Algorithm 8.

Worth noting that rBoost algorithm has some analogies with cost-sensitive boosting

(Fan and Stolfo [1999], Masnadi-Shirazi and Vasconcelos [2011]). One major difference

is that the weighting factors in our case are outside of the exponential, whereas they are

inside the exponent in the mentioned works. In Fan and Stolfo [1999] the author did

briefly discuss the possibility of having the weighting factors outside of the exponential,

however their update of the weight is different from ours. Besides, the goal of cost-
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sensitive methods is different from ours. In cost-sensitive framework the cost is assumed

to be known or given by the expert, and there is no implication of labelling errors.

Algorithm 8 The robust Boosting, ‘rBoost’, algorithm

Input: data {xn, ỹn}Nn=1, boosting round T
Initialize wjk = γjk
for t = 1 to T do
(1)ht = argmaxβ Eq.(2) weighted by wn.
(2)Calculate the error w.r.t. wn defined in Eq.(11)

ǫt =
∑N

n=1wn1(ỹn 6= ht(xn))
(3)Optimise αt numerically using the gradient in Eq.(13).
(4)Update wjk according to Eq.(14)–(17).
(5)Calculate p(y = 1|x, H) using Platt’s method.
(6)Update γjk using Eq.(19)-(20).

end for
Output the final classifier sign(

∑T
t=1 αtht).

7.3 Empirical evaluation

This section will investigate the performance of our robust boosting methods in prac-

tice. In addition, our new rBoost algorithm will be compared to the standard AdaBoost,

GentleAdaBoost and ModestAdaBoost.

7.3.1 Methodology

We will study 4 configurations of base-learner and booster pairs: 1) LR + AdaBoost,

2) rLR + AdaBoost, 3) LR + rBoost and 4) rLR + rBoost. These four combinations

will shed light on whether 1) a robust committee is robust against label errors?, 2) the

new rBoost can counteract the bad effects of label noise? and finally 3) What can we

get from pairing them together? We set our baseline to be the GentleAdaBoost and

ModestAdaBoost where the base learner is a decision tree with maximum node splits of

2. For LR to serve as a weak learner, we employ random subsampling to create diversity

in the ensemble. Further, we create two types of training sets by artificially injecting

symmetric and asymmetric label noise at 10% rate, as well as at 30% contamination rate
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Data set Training samples Test samples Pos. samples Neg. samples Dimensionality
Banana 400 4900 44.83% 55.17% 2
B.Cancer 200 77 29.28% 70.72% 9
Diabetes 468 300 34.90% 65.10% 8
German 700 300 30.00% 70.00% 20
Heart 170 100 44.44% 55.56% 13
Image 1300 1010 56.95% 43.05% 18
Ringnorm 400 7000 49.51% 50.49% 20
S.Flare 666 400 65.28% 34.72% 9
Splice 1000 2175 44.93% 55.07% 60
Thyroid 140 75 30.23% 69.77% 5
Titanic 150 2051 58.33% 41.67% 3
Twonorm 400 7000 50.04% 49.96% 20
Waveform 400 4600 32.94% 67.06% 21

Table 7.1: Characteristics of the datasets used.

into the training data. We train on the corrupted training set and validate the performance

of the ensemble on a clean test set. We report the average and standard deviation of the

misclassification rates from 10 independent random repetitions of 150 rounds of boosting

each.

7.3.2 Datasets

Again, we use 13 UCI benchmark datasets (Rätsch et al. [2001]) in our controlled experi-

ments. Each problem has been split into 100 train/test realisations except the Image and

Splice datasets where 20 realisations are provided. The characteristics of the datasets

used are summarised in Table 7.1.

7.3.3 Results and discussion

We first investigate the behaviour of the robust classifiers as weak learners within the

original AdaBoost algorithm. From the leftmost column of Tables 7.2-7.5, we see that

when a robust classifier is used as a base learner the generalisation error of the ensemble is

already lower compared to the original non-robust AdaBoost in 4 out of 7 datasets. The

finding is consistent across all noise levels. It very interesting to observe this because even

though the base classifier is robust, it is still under the control of the original AdaBoost.

Namely, the boosting will still guide the classifiers to focus on the more difficult parts

of the dataset (which of course are likely to contain the points whose labels are wrong).
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Why is then this committee of robust classifiers more accurate? Lower error can come

from two different sources: Either the robust committee is indeed robust against labelling

errors, or it simply converges faster. To check this we run both configurations for more

rounds to see the dynamics of the ensemble. Plotted in Figure 7.2 and Figure 7.3 are

the training and test errors of AdaBoost using the robust classifiers (rLR) as well as

using the traditional classifiers (LR) on selected datasets. Superimposed for reference are

ModestAdaBoost and rLR + rBoost.

It turns out that the robust committee converges much quicker than the non-robust

committee. However when boosted long enough we are starting to see that their classifi-

cation performances become very similar. This answers our first research question. The

robust classifiers as weak learners introduce what is understood to be a ‘good diversity’

in the ensemble, and drives the ensemble to convergence much more quickly than the

non-robust committee. Unfortunately however, the robustness of the base learner is not

enough to withstand the effect of labelling errors.

Now we see that having rLR as a base learner alone is not enough to counteract the

bad effects of mislabelling. We investigate further if we can pair rLR, which has a fast

convergence rate with our new rBoost algorithm.

Before proceeding, we need to establish that rBoost is superior to original AdaBoost

when there is label noise. To this end, we consider two combinations: 1) AdaBoost+LR

and 2)rBoost + LR in Tables 7.2-7.5. From the tables we see that rBoost+LR performs

comparably to its non-robust booster counterpart when the noise rate is relatively low,

and in the case of symmetric label case (i.e. the easy cases in terms of label noise).

However when the noise is asymmetric and more severe (Table 7.5), rBoost substantially

outperforms the original AdaBoost in general as test using Friedman test + Nemenyi

post-hoc test. This answers our second research question. That is, rBoost improves over

the original AdaBoost in terms of classification performance especially in higher label
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Figure 7.2: Test error(left) and training error(right) for Banana and Diabetes datasets.
The x-axis indicates boosting rounds while the y-axis shows classification errors.

contamination rate conditions and in asymmetric label noise conditions (i.e. the difficult

cases).

Next, we equip our rBoost method with the robust base classifiers that enjoy fast

convergence to obtain our final robust boosting algorithm. These results are shown in the

fourth column of Table 7.5. The superior performance of this approach is most apparent,

and we also give an illustrative example of the working of our rBoost on the Banana

dataset in Figure 7.4. We see that the original AdaBoost generated a patchy decision

boundary as a result of label noise, while our rBoost returned a smoother and more

appropriate decision boundary.

Further, we validate our approach for estimating the flip probabilities γjk using the

multiplicative updates given in Eq.(19) and Eq.(20). Disappointingly, we see that the

results (5th and 6th column of Tables 7.2-7.5) are not as good as the ideal setting where

the γjk are fixed to the true value (rBoost-Fixed gamma). The reason is that the estimated

155



0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

 

 

LR+AdaBoost
rLR+AdaBoost
rLR+rBoost
GentleAdaBoost
ModestAdaBoost

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

LR+AdaBoost
rLR+AdaBoost
rLR+rBoost
GentleAdaBoost
ModestAdaBoost

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.3: Test error(left) and training error(right) for Twonorm andWaveform datasets.
The x-axis indicates boosting rounds while the y-axis shows classification errors.

gamma table tends to converge to the identity (suggesting that there is no label error).

This is an indication that the classifier is so powerful that even the robustification cannot

prevent it from overfitting the label noise. However, and more interestingly, we observe

that the quality of the estimated gammas depends highly on the quality of the calibrated

probability used in the update. Assuming that we have a trusted validation set that we

can use to obtain a more accurate calibrated probability, we ask how well can we estimate

the gammas? We hold out a small subset of the dataset, where all of the labels are clean.

This will be our trusted validation set, and we took this set as tiny as 20 points only. We

feed this small trusted dataset into the Platt’s calibration method. We carried out this

experiment on Banana, Image and Twonorm. The classification error from 10 repeated

runs of our rBoost algorithm with the use of the trusted validation set as a source for

calibrating the probability is 15.74±0.23% on Banana at 30% asymmetric noise, compared

to 23.83% without. This is taken from the sixth column of Table 7.5. On Image at 30%
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Figure 7.4: Comparison of the decision boundaries obtained from AdaBoost(left) and
rBoost(right) in noise-free case(top) and 30% asymmetric noise case(bottom) on Banana
dataset.

asymmetric noise the error is as low as 7.61±0.19% and on Twonorm it is 9.73±0.31%.

Intriguingly, a tiny trusted set of 20 points is able to improve the situation even for the

Image data, where the training set size is as large as 1300 (80% of total number of samples

in Image). Thus we can conclude that the trusted validation set approach may be seen

as a technique to effectively and efficiently incorporate extra knowledge about the labels

into the rBoost algorithm. We should note, this differs from simply including the trusted

samples into the training set, since the latter would simply make a slight reduction of

the noise rate. Of course, the larger the trusted validation set for calibration, the better

probability calibration we can expect, and consequently this should lead to more accurate

estimates of the gammas (γjk), and hence to better classification performance.
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Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 18.53±1.0 13.13±1.1 17.53±1.8 12.94±0.9 17.44±1.8 12.96±0.9 16.09±1.6 21.87±3.4
B.Cancer 33.12±4.8 33.12±3.7 31.04±3.1 31.43±4.4 32.08±4.2 35.58±3.8 32.60±5.7 29.35±4.1
Diabetes 24.00±2.7 25.80±2.3 24.10±1.7 25.63±1.5 23.87±1.9 25.20±2.4 27.40±2.0 24.33±1.9
German 25.30±2.8 26.33±2.2 25.73±1.9 26.00±3.0 24.87±2.6 25.90±3.2 27.93±2.0 28.03±1.8
Heart 21.20±4.4 21.60±3.1 22.40±3.9 20.30±3.5 22.10±4.8 20.90±4.4 23.60±3.1 22.40±3.5
Image 14.61±1.3 4.08±1.0 15.29±1.5 4.49±0.8 13.51±1.4 4.12±0.8 4.43±0.7 15.91±3.1
Ringnorm 27.47±1.2 29.77±2.0 27.05±1.2 37.23±3.0 27.37±0.9 30.06±2.1 14.68±1.8 11.89±1.5
S.Flare 35.52±1.3 34.85±1.7 35.00±1.0 35.45±1.3 35.32±1.4 35.18±1.4 35.98±1.5 34.48±4.4
Splice 18.49±0.9 17.07±1.1 19.32±1.0 20.18±1.9 18.54±0.9 16.96±1.0 11.91±1.1 5.91±1.0
Thyroid 12.40±5.0 11.73±5.2 11.47±5.2 13.73±4.3 13.07±4.7 12.40±4.5 10.93±2.9 6.80±4.1
Titanic 22.76±1.3 22.32±1.1 22.97±1.4 22.37±1.1 22.76±1.2 22.37±1.4 22.30±1.7 23.28±1.4
Twonorm 5.78±0.8 4.30±0.8 5.75±0.7 4.42±0.9 5.72±1.0 4.41±0.7 9.65±1.0 7.21±0.5
Waveform 16.67±1.5 13.40±0.7 16.43±0.7 14.65±0.8 16.12±1.2 13.47±0.6 14.98±0.8 14.77±1.5
Average rank 5.2692 3.6538 4.8077 4.5769 4.5000 3.8462 4.8462 4.5000
p-value 0.7489

Table 7.2: Average classification errors and standard deviations for AdaBoost and rBoost
at 10% symmetric noise together with Friedman test at the 5% level.

Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 18.71±3.1 14.73±3.0 18.14±1.7 14.47±2.1 18.05±1.6 14.94±2.7 20.62±1.6 24.69±2.5
B.Cancer 35.58±3.4 39.22±5.1 34.94±6.5 32.99±4.8 35.58±6.2 39.48±5.5 39.09±7.7 33.38±4.6
Diabetes 25.37±2.3 27.47±1.9 24.90±2.3 29.57±2.4 25.23±2.7 28.57±2.3 30.60±2.9 26.67±2.3
German 30.67±1.8 32.60±3.5 31.37±2.9 29.50±2.9 30.33±3.1 34.73±3.4 35.37±4.0 30.93±3.1
Heart 22.10±5.7 21.50±4.0 22.70±4.0 22.60±6.5 22.90±4.9 21.90±4.3 30.00±5.5 24.80±3.7
Image 14.67±1.4 6.94±1.0 15.23±1.0 6.67±1.0 14.30±0.9 6.52±0.9 7.51±1.0 20.10±4.4
Ringnorm 33.54±1.1 33.76±2.4 37.58±2.5 45.75±1.5 33.78±1.7 33.71±1.7 28.46±1.8 18.39±2.2
S.Flare 35.65±1.9 35.50±2.3 47.33±3.7 47.47±4.8 35.00±1.9 35.48±2.6 36.48±2.3 35.00±3.9
Splice 27.53±2.0 28.65±1.6 35.05±1.4 39.01±1.4 27.07±2.2 28.23±2.2 27.09±2.5 13.77±2.6
Thyroid 16.27±3.1 24.53±6.9 21.20±7.0 22.13±5.7 18.80±4.6 24.53±6.9 24.40±7.4 17.60±7.2
Titanic 23.12±1.6 23.01±1.8 23.27±1.5 22.92±1.4 23.09±1.4 23.11±1.8 22.80±1.9 23.41±1.3
Twonorm 8.53±1.1 6.67±0.9 8.77±1.0 6.87±1.3 8.63±1.0 6.60±1.1 16.06±2.0 8.84±0.9
Waveform 21.02±2.1 16.88±1.8 20.80±2.4 18.16±2.0 20.41±2.2 16.96±1.6 20.26±2.2 15.57±0.9
Average rank 4.3462 4.1154 5.4615 4.1538 3.9231 4.2692 5.5385 4.1923
p-value 0.5363

Table 7.3: Average classification errors and standard deviations for AdaBoost and rBoost
at 30% symmetric noise together with Friedman test at the 5% level.

7.4 Summary

We presented a robust boosting algorithm based on the famous AdaBoost algorithm

called rBoost. The rBoost contains good properties namely its objective is non-convex

and it has label noise parameters that can be estimated efficiently using the proposed

multiplicative update rules. The new algorithm is also appealing since it requires only a

minor modification to the existing AdaBoost algorithm. We further demonstrated that

the label noise parameters can be more accurately estimated by using a trusted validation
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Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 17.85±2.7 13.54±1.3 16.78±1.7 12.55±1.1 17.81±2.4 13.65±1.2 16.81±1.5 22.27±2.8
B.Cancer 31.82±5.5 32.60±5.9 30.26±4.1 29.09±4.2 33.12±5.3 34.29±6.4 33.51±8.0 30.13±4.9
Diabetes 24.70±1.6 25.67±1.6 24.27±1.7 25.57±1.5 24.23±1.6 25.97±1.7 27.80±2.1 24.93±1.6
German 25.63±2.8 26.57±1.8 24.77±2.5 24.53±2.5 25.40±2.5 26.50±3.4 26.67±2.5 27.10±2.0
Heart 21.70±4.4 21.50±3.9 21.60±3.7 22.20±2.9 21.30±3.7 21.10±2.7 26.10±3.2 21.70±4.2
Image 15.88±1.0 4.52±1.0 15.20±1.6 4.06±0.9 15.15±1.5 4.40±1.2 4.45±0.7 24.12±1.9
Ringnorm 27.48±1.4 25.66±0.7 26.26±1.2 29.57±1.8 27.29±1.4 26.00±0.4 11.63±1.1 12.28±1.4
S.Flare 35.03±1.4 34.85±1.0 34.52±1.3 34.67±2.5 35.43±1.5 35.05±1.5 35.90±1.4 46.37±15.4
Splice 18.29±1.2 15.82±0.8 17.94±0.6 16.42±0.9 17.89±0.9 15.55±0.9 10.07±0.9 6.91±1.0
Thyroid 12.00±4.4 9.73±2.5 11.73±3.2 9.60±3.3 12.93±3.8 10.40±3.3 10.13±3.6 7.73±2.6
Titanic 22.87±1.3 23.06±1.3 22.65±1.3 22.23±1.1 23.58±1.6 22.44±1.0 22.83±1.5 23.63±1.5
Twonorm 7.02±1.6 5.21±1.1 6.16±1.4 4.51±0.8 6.56±1.4 5.34±1.1 9.19±1.0 7.71±1.2
Waveform 18.10±1.3 14.48±1.1 17.83±1.2 16.23±1.5 17.71±1.2 14.54±1.4 16.52±1.0 14.19±0.7
Average rank 5.8077 3.7692 4.1538 3.0000 5.1538 3.9231 5.3077 4.8846
p-value 0.0631

Table 7.4: Average classification errors and standard deviations for AdaBoost and rBoost
at 10% asymmetric noise together with Friedman test at the 5% level.

Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 31.45±5.2 23.53±4.7 27.31±4.5 14.27±1.0 32.39±3.9 23.83±4.1 25.38±2.7 33.04±6.8
B.Cancer 39.22±4.9 40.26±6.3 35.06±5.6 30.52±3.7 40.91±7.2 41.82±7.4 42.86±5.9 37.40±7.7
Diabetes 32.20±2.1 33.43±3.9 29.47±3.0 30.20±2.6 32.80±3.3 33.27±3.1 38.37±3.6 32.07±3.5
German 36.23±3.2 35.27±3.3 31.30±3.2 27.67±2.5 34.53±3.6 33.93±3.5 36.17±3.6 35.83±4.6
Heart 27.60±5.5 27.30±6.8 23.00±4.3 24.30±3.8 28.20±6.3 28.00±6.9 32.00±7.2 29.60±11.7
Image 22.48±1.6 10.70±0.9 16.96±1.8 5.47 ±1.0 20.53±1.6 9.82 ±1.5 11.94±1.1 26.44±1.3
Ringnorm 34.71±2.5 26.80±1.1 30.64±1.4 38.37±2.6 33.92±2.3 27.12±0.8 21.33±2.3 47.48±10.3
S.Flare 37.48±3.9 37.25±4.3 35.80±1.9 34.92±1.3 37.00±4.3 38.22±5.0 37.85±4.2 67.88±5.3
Splice 26.15±2.2 24.50±2.0 20.88±1.3 20.65±1.7 25.30±1.8 24.25±2.5 20.15±1.5 17.56±2.5
Thyroid 23.07±6.6 16.93±6.9 14.80±3.7 13.07±5.0 21.47±6.2 15.20±6.5 24.93±6.0 23.73±17.2
Titanic 32.60±8.4 31.21±8.7 23.88±1.8 22.14±1.5 33.17±9.3 30.73±8.7 32.94±9.0 33.49±13.7
Twonorm 16.02±2.4 12.07±2.0 8.89 ±1.5 6.51 ±1.3 14.68±2.3 12.19±2.0 17.85±1.8 16.62±3.1
Waveform 28.83±2.8 23.43±2.5 24.27±2.1 19.95±1.6 28.39±3.1 23.02±2.5 27.31±2.5 21.10±2.2
Average rank 5.9231 4.0000 2.8462 1.7692 5.6154 4.1538 5.8462 5.8462
p-value 3.2e-6
Nemenyi CD 2.5845

Table 7.5: Average classification errors and standard deviations for AdaBoost and rBoost
at 30% asymmetric noise together with Friedman test at the 5% level.

set for Platt’s calibration algorithm as a form of extra information. It shows good result

close to the rBoost with label noise parameters fixed to the true values. In addition,

we have empirically shown that simply employing a robust classifier as a base learner

in AdaBoost does not help to alleviate the bad effect of label noise. However, rather

interestingly, its effect is to speed up the boosting process. This could be advantageous

in cases of low noise.

From the empirical results we also see that as the complexity of a classifier increases
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its ability to estimate the label flipping probabilities is impaired. Eventually the classifier

won’t be able to distinguish between good and noisy training labels. Rather the classifier

will simply learn to fit all the labels without questioning theirs correctness, unless there

is extra information available.
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CHAPTER 8

Conclusion and Outlook

The thesis presents approaches to incorporate a probabilistic label noise model into the

classical probabilistic classifiers and investigates their performance empirically and theo-

retically.

We presented a multi-class robust normal discriminant analysis classifier (rNDA) in

Chapter 3, the robust Logistic Regression (rLR) and robust multinomial logistic regression

(rmLR) in Chapter 4, and the robust Bayesian Logistic Regression in Chapter 5. Empirical

results on both synthetic datasets with artificial label noise and real-world datasets which

genuinely contain label errors suggest that the robust classifiers outperform the classical

approaches in terms of classification accuracy. The theoretical analysis also confirms that

the new robust classifiers have an ability to obtain more accurate parameter estimates in

noisy situations.

To broaden the applicability of our robust models, we presented the robust Kernel

Logistic Regression (rkLR) and its multi-class extension in Chapter 6. The challenge is

how to perform model selection in noisy label environment where the use of standard

cross-validation technique is sub-optimal. The proposed solution adopts a multiple kernel

learning framework to select good kernel parameters and the makes use of Bayesian reg-
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ularisation technique to select good regularisation coefficients. This new approach shows

superior performance in terms of classification accuracy and is significantly faster than

cross-validation.

In addition to studying a single robust classifier, we discussed in Chapter 7 an ensemble

of robust classifiers by extending AdaBoost at two different levels. At the lower level we

studied the robust committee where robust classifiers are combined and boosted using

existing AdaBoost algorithm. At the higher level, we proposed a new robust boosting

algorithm utilising a more robust objective function. We showed that a committee of

robust classifiers, although converging faster, is still susceptible to noise. Meanwhile, the

new robust boosting is able to deal with label noise. Due to the unbounded complexity of

the robust boosting, the robust boosting algorithm is not entirely immune to label noise

and could eventually fail as its complexity increases, unless some extra information is

provided. This finding suggests that the success of probabilistic noise modelling depends

on the complexity of target classifier. Relating this finding back to the models in Chapters

3-6, we can understand that the positive results observed are because those classifiers are

relatively constrained.

Throughout the thesis, we studied random misclassification noise which assumes that

mislabelling arises randomly and independently from the observation features. This is

different from a non-random noise where label flipping depends on the content of the

observation. The difference in the nature of label noises suggests that each type of noise

needs a separate treatment using an appropriate model. Having said that, however, we

found that the random noise model works pretty well even in the situation where the

randomness assumption does not strictly hold true – for example in our bike classification

problem where the labeller might have used textual information around an image to

determine the label of the image. Another example is microarray classification where it is

very likely that the labelling process is not entirely independent of the feature content, and
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yet the random noise model has been successfully applied. In such situations the random

label noise model may be understood as a simplifying model assumption which trades

some suboptimality for tractability to estimate the key parameters from limited amounts

of data. These results demonstrate indeed that the random label noise assumption is

useful in practice despite its simplicity even when there exist some dependencies between

the label flipping and the input. Nonetheless, developing more specialised noise models

for non-random class noise is an interesting avenue for future work.
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APPENDIX A

Derivation details

A.1 Derivation of the robust boosting

This section shows derivation details of the rBoost algorithm. The loss of the rBoost is
defined as:

L(H) =
N
∑

n=1

1(ỹn = 1)
{

γ00e
−H(xn) + γ01e

H(xn)
}

+ 1(ỹn = −1)
{

γ11e
H(xn) + γ10e

−H(xn)
}

(1)

Here, γjk are again probabilistic factors representing uncertainty in labels. We write out
the form of H(xn) for the next round of AdaBoost. Minimising this loss of eq. (1) in a
step-wise manner is then equivalent to minimising the following:

argmin
h,α

(

N
∑

n=1

1(ỹn = 1)
{

γ00e
−(H(xn)+αh(xn)) + γ01e

H(xn)+αh(xn)
}

+ 1(ỹn = −1)
{

γ11e
H(xn)+αh(xn) + γ10e

−(H(xn)+αh(xn))
})

(2)

= argmin
h,α

N
∑

n=1

{

1(ỹn = 1)γ00e
−H(xn)e−αh(xn) (3)

+ 1(ỹn = 1)γ01e
H(xn)eαh(xn) (4)

+ 1(ỹn = −1)γ11eH(xn)eαh(xn) (5)

+ 1(ỹn = −1)γ10e−H(xn)e−αh(xn)
}

(6)
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Now consider each term in the sum.

(3) =
∑

i|h(xn)=ỹn

1(ỹn = 1)γ00e
−H(xn)e−α

+
∑

i|h(xn) 6=ỹn

1(ỹn = 1)γ00e
−H(xn)eα

=
N
∑

n=1

(

1− 1(h(xn) 6= ỹn)
)

1(ỹn = 1)γ00e
−H(xn)e−α

+
∑

i|h(xn) 6=ỹn

1(ỹn = 1)γ00e
−H(xn)eα

=
N
∑

n=1

1(ỹn = 1)γ00e
−H(xn)e−α

−
N
∑

n=1

1(ỹn = 1)1(h(xn) 6= ỹn)γ00e
−H(xn)e−α

+
N
∑

n=1

1(ỹn = 1)1(h(xn) 6= ỹn)γ00e
−H(xn)eα

=
(

eα − e−α
)

N
∑

n=1

1(ỹn = 1)1(h(xn) 6= ỹn)γ00e
−H(xn)

+
N
∑

n=1

1(ỹn = 1)γ00e
−H(xn)e−α (7)

Using similar substitution and grouping, we also have the following:

(4) =
(

e−α − eα
)

N
∑

n=1

1(ỹn = 1)1(h(xn) 6= ỹn)γ01e
H(xn)

+
N
∑

n=1

1(ỹn = 1)γ01e
H(xn)eα (8)

(5) =
(

eα − e−α
)

N
∑

n=1

1(ỹn = −1)1(h(xn) 6= ỹn)γ11e
H(xn)

+
N
∑

n=1

1(ỹn = −1)γ11eH(xn)e−α (9)

(6) =
(

e−α − eα
)

N
∑

n=1

1(ỹn = −1)1(h(xn) 6= ỹn)γ10e
−H(xn)
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+
N
∑

n=1

1(ỹn = −1)γ10e−H(xn)eα (10)

Summing all four expressions we have the objective:

argmin
h,α

(eα − e−α)
N
∑

n=1

{

1(ỹn = 1)γ00e
−H(xn)1(h(xn) 6= ỹn)

+ 1(ỹn = −1)γ11eH(xn)1(h(xn) 6= ỹn)
}

+ e−α
N
∑

n=1

{

1(ỹn = 1)γ00e
−H(xn) + 1(ỹn = −1)γ11eH(xn)

}

− (eα − e−α)
N
∑

n=1

{

1(ỹn = 1)γ01e
H(xn)1(h(xn) 6= ỹn)

+ 1(ỹn = −1)γ10e−H(xn)1(h(xn) 6= ỹn)
}

+ eα
N
∑

n=1

{

1(ỹn = 1)γ01e
H(xn) + 1(ỹn = −1)γ10e−H(xn)

}

(11)

= argmin
h,α

2 sinh(α)×

N
∑

n=1

{

1(ỹn = 1)1(h(xn) 6= ỹn)[γ00e
−H(xn) − γ01eH(xn)]

}

+ 2 sinh(α)×
N
∑

n=1

{

1(ỹn = −1)1(h(xn) 6= ỹn)[γ11e
H(xn) − γ10e−H(xn)]

}

+ e−α
N
∑

n=1

{

1(ỹn = 1)γ00e
−H(xn) + 1(ỹn = −1)γ11eH(xn)

}

+ eα
N
∑

n=1

{

1(ỹn = 1)γ01e
H(xn) + 1(ỹn = −1)γ10e−H(xn)

}

(12)

Define w00 = γ00e
−H(xn), w01 = γ01e

H(xn), w11 = γ11e
H(xn) and w10 = γ10e

−H(xn) , we
simplify the objective into.

argmin
h,α

2 sinh(α)
N
∑

n=1

{

wn1(h(xn) 6= ỹn)
}

+ e−α
N
∑

n=1

{

1(ỹn = 1)w00 + 1(ỹn = −1)w11

}
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+ eα
N
∑

n=1

{

1(ỹn = 1)w01 + 1(ỹn = −1)w10

}

(13)

where

wn =

{

(w00 − w01), if ỹn = +1.

(w11 − w10), if ỹn = −1. (14)
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APPENDIX B

Probability background

B.1 Hoeffding’s inequality

Let Z1, ....Zm be a sequence of i.i.d random variables and assume that E[Z1] = µ and
p[a ≤ Z1 ≤ b] = 1. Then for any ǫ > 0

p[| 1
m

M
∑

i=1

Zi − µ| > ǫ] ≤ 2 exp

( −2mǫ2
(b− a)2

)

(1)

B.2 Jensen’s inequality
If g is a convex function then

Eg(x) ≥ g(E(x)) (2)

If g is a concave function then
Eg(x) ≤ g(E(x)) (3)

B.3 Boole’s inequality (union bound)
For any two sets of event A,B we have

p[A ∪ B] ≤ p[A] + p[B] (4)

B.4 Markov’s inequality
Let Z be a non-negative random variable and ∀a > 0, we have

p[Z ≥ a] ≤ E[Z]

a
(5)
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José S. Sánchez, Ricardo Barandela, A. I. Marqués, Roberto Alejo, and Jorge Badenas.

Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters,

24(7):1015–1022, 2003. 3 citations in sections 1.2, 2.3.1, and 4.5.3.

Robert E. Schapire. A brief introduction to boosting. In Proceedings of the 16th In-

ternational Joint Conference on Artificial Intelligence, (IJCAI’99), pages 1401–1406.

Morgan Kaufmann, 1999. One citation in section 2.2.

Shai Shalev-Shwartz. Introduction to machine learning. The Hebrew University of

Jerusalem , http://www.cs.huji.ac.il/~shais/Handouts.pdf, 2009. One citation

in section 4.4.6.

Shirish K. Shevade and Sathiya S. Keerthi. A simple and efficient algorithm for gene

selection using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003. 4

citations in sections 5.1.1, 5.2, 5.2.1, and 5.5.1.

Robert H. Sloan. Four types of noise in data for PAC learning. Information Processing

Letters, 54:157–162, May 1995. 2 citations in sections 1.2 and 2.4.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap and fast

- but is it good? evaluating non-expert annotations for natural language tasks. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing,

(EMNLP’08), pages 254–263, 2008. 2 citations in sections 1.2 and 6.2.5.

181

http://www.cs.huji.ac.il/~shais/Handouts.pdf


Takashi Takenouchi, Shinto Eguchi, Noboru Murata, and Takafumi Kanamori. Robust

boosting algorithm against mislabeling in multiclass problems. Neural Computation,

20(6):1596–1630, June 2008. 2 citations in sections 2.1 and 2.3.2.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142,

November 1984. One citation in section 2.4.

Leslie G. Valiant. Learning disjunction of conjunctions. In Proceedings of the 9th Inter-

national Joint Conference on Artificial Intelligence, (IJCAI’85), pages 560–566, 1985.

One citation in section 2.4.

Hamed Valizadegan and Pang-Ning Tan. Kernel based detection of mislabeled training

examples. In Proceedings of the 7th SIAM International Conference on Data Mining,

(SIAM’07), 2007. One citation in section 2.3.1.

Vladimir N. Vapnik. Statistical learning theory. Wiley, 1 edition, September 1998. 3

citations in sections 1.1, 1.1, and 1.1.

Sundara Venkataraman, Dimitris Metaxas, Dmitriy Fradkin, Casimir Kulikowski, and

Ilya Muchnik. Distinguishing mislabeled data from correctly labeled data in classi-

fier design. In Proceedings of the 16th IEEE International Conference on Tools with

Artificial Intelligence, (ICTAI’04), pages 668–672, 2004. One citation in section 2.3.1.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. Tech-

nical report, Department of Mathematics, University of Michigan, November 2010. 4

citations in sections 3.5, 3.5, 3.5, and 3.5.5.

Alexander Vezhnevets and Vladimir Vezhnevets. Modest AdaBoost – teaching AdaBoost

to generalize better. In Proceeding of the International Conference on Computer Graph-

ics and Vision, (GraphiCon’05), Novosibirsk Akademgorodok, Russia, 2005. One cita-

tion in section 2.3.2.

182



MikeWest, Carrie Blanchette, Holly Dressman, Erich Huang, Seiichi Ishida, Rainer Spang,

Harry Zuzan, John A. Olson Jr., Jeffrey R. Marks, and Joseph R. Nevins. Predicting the

clinical status of human breast cancer by using gene expression profiles. Proceedings of

the National Academy of Sciences of the United States of America, 98(20):11462–11467,

2001. 2 citations in sections 5.5.2 and 5.5.4.

Linli Xu, Koby Crammer, and Dale Schuurmans. Robust support vector machine training

via convex outlier ablation. In Proceedings of the 21st National Conference on Artificial

Intelligence , (AAAI’06), pages 536–542, 2006. One citation in section 6.2.

Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and effi-

cient multiple kernel learning by group lasso. In Proceedings of the 27th International

Conference on Machine Learning, (ICML’10), pages 1175–1182, 2010. 2 citations in

sections 1 and 6.2.4.

Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Lijun Zhang, and Yang Zhou. Multiple

kernel learning from noisy labels by stochastic programming. In Proceedings of the 29th

International Conference on Machine Learning, (ICML’12), pages 233–240, 2012. 3

citations in sections 6.2, 6.2.4, and 6.2.4.

Yutaka Yasui, Margaret Pepe, Li Hsu, Bao-Ling Adam, and Ziding Feng. Partially su-

pervised learning using an EM-boosting algorithm. Biometrics, 60(1):199–206, 2004. 2

citations in sections 1.2 and 2.3.2.

Chen Zhang, Chunguo Wu, Enrico Blanzieri, You Zhou, Yan Wang, Wei Du, and Yanchun

Liang. Methods for labeling error detection in microarrays based on the effect of data

perturbation on the regression model. Bioinformatics, 25:2708–2714, 2009. 4 citations

in sections 1.3, 2.3.1, 4.5.3, and 5.5.1.

Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine. In

183



Journal of Computational and Graphical Statistics, pages 1081–1088. MIT Press, 2001.

One citation in section 1.3.2.

Xingquan Zhu, Xindong Wu, and Qijun Chen. Eliminating class noise in large datasets.

In Proceedings of the 20th International Conference on Machine Learning, (ICML’03),

pages 920–927, 2003. One citation in section 2.3.1.

184


	1 Introduction
	1.1 Classification & supervised learning 
	1.2 Learning from mislabelled data
	1.3 Research challenges & aims
	1.3.1 Probabilistic label noise modelling
	1.3.2 Model selection in the presence of label noise
	1.3.3 Limitations of the probabilistic noise model

	1.4 Contributions of the thesis
	1.5 Outline of the thesis
	1.6 Publications from the research
	1.7 Software availability

	2 Background and Related Work
	2.1 Types of label noise
	2.2 Impact of label noise
	2.3 Previous solutions to the problem
	2.3.1 Filtering approaches
	2.3.2 Model-based approaches

	2.4 Existing theoretical analyses

	3 Multi-class Robust Normal Discriminant Analysis
	3.1 The model
	3.2 The learning algorithm
	3.2.1 Updating the mean
	3.2.2 Updating the covariance
	3.2.3 Updating the class prior
	3.2.4 Updating the label flipping probabilities

	3.3 Classifying a novel point
	3.4 Empirical evaluation
	3.4.1 Datasets
	3.4.2 Results and discussion

	3.5 Theoretical analysis
	3.6 Summary

	4 Robust Logistic Regression
	4.1 The model
	4.2 The learning algorithm
	4.2.1 Updating the weight vector
	4.2.2 Updating the label flipping probabilities

	4.3 Extension to multi-class problem
	4.4 Theoretical analysis
	4.4.1 Convergence of the algorithm
	4.4.2 Connection to EM based optimisation
	4.4.3 Interpretation of rLR
	4.4.4 Error analysis

	4.5 Empirical evaluation
	4.5.1 Experiment setting
	4.5.2 Datasets
	4.5.3 Simulated noise
	4.5.4 Real data with inaccurate label

	4.6 Summary

	5 Robust Bayesian Logistic Regression
	5.1 The model
	5.1.1 Sparsity prior

	5.2 Parameter estimation
	5.2.1 Updating the weight vector
	5.2.2 Updating the label flipping probabilities

	5.3 Detecting mislabelled points
	5.4 A note on low sample size, high dimensional data
	5.5 Empirical evaluation
	5.5.1 Experiment setting
	5.5.2 Datasets
	5.5.3 Error measures
	5.5.4 Results and discussion

	5.6 Summary

	6 Robust Kernel Logistic Regression
	6.1 The robust kernel machine
	6.1.1 Selecting the kernel width: A multi-kernel approach
	6.1.2 Choosing the regularisation parameters by Bayesian regularisation

	6.2 Empirical evaluation
	6.2.1 Experimental protocol
	6.2.2 KLR versus rKLR
	6.2.3 Cross Validation versus MKL with Bayesian regularisation
	6.2.4 Comparisons with state-of-the-art classifiers
	6.2.5 Real applications

	6.3 Extension to multi-class problems
	6.4 Summary

	7 Ensemble of Robust Classifiers
	7.1 A robust base learner
	7.2 The robust boosting
	7.2.1 Adding a new base learner
	7.2.2 Updating the weight of base learner
	7.2.3 Updating the weight of data point
	7.2.4 Updating the label flipping probabilities

	7.3 Empirical evaluation
	7.3.1 Methodology
	7.3.2 Datasets
	7.3.3 Results and discussion

	7.4 Summary

	8 Conclusion and Outlook
	A Derivation details
	A.1 Derivation of the robust boosting

	B Probability background
	B.1 Hoeffding's inequality
	B.2 Jensen's inequality
	B.3 Boole's inequality (union bound)
	B.4 Markov's inequality


