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Abstract. Being able to accurately recognise food categories from in-
put images has many possibly useful applications such as content-based
recipe searching or automatic intake calories tracking. Convolutional neu-
ral networks has been successfully applied in a number of food recognition
tasks. Despite its impressive predictive performance on closed datasets,
there is currently no standard mechanism for distinguishing unknown
object classes from the known ones leading to invalid classification at-
tempts even on non-food images. In this paper, we study a technique for
detecting whether input images are beyond the scope of CNN’s knowl-
edge. The idea is to model the final activation vectors of data from the
known classes using a data description method namely the support vec-
tor data description. We can then reject network’s prediction if the ac-
tivation vector of the query image is too different from the known ones
as generalised by the model. Experimental results on a subset of UEC-
FOOD100 datasets demonstrated that the proposed method was able to
accurately classify instances from the known classes while also being able
to satisfactorily reject the prediction of novel food image compared to
two commonly used baselines.
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1 Introduction

Food categories recognition is one of the interesting topics among several visual
recognition tasks. An accurate food recogniser can be employed in many real
world applications such as intake calories estimation [12], dietary assessment
[13] or recipe searching from image [2], to name just a few. Several attempts
had been made to tackle the problem of food categories classification problem.
The majority of previous research was based on Support Vector Machine us-
ing specially crafted visual features [16, 5]. Some classical pattern recognition
techniques such as k-nearest neighbour has also been employed for the task [7].
Recently, Convolutional Neural Networks (CNN) is gaining more popularity due
to its impressive performance in visual recognition tasks [6, 18]. Unlike previous
image classification approaches which rely on the quality of visual features ex-
tracted from the image, CNN learns good feature representation simultaneously
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with learning the classifier. The model has been adopted for food recognition
task [11, 10, 20] and has been shown to outperform existing approaches.

Despite of its impressive predictive performance, CNN and in fact any clas-
sifier in general still has some limitation for real-world usage. In particular,
classical supervised learning assumes query input comes from the same data dis-
tribution as the one used to train the model. In the context of food categories
recognition, we implicitly assume that query food image be one of the known
food categories. Unfortunately, this assumption does not always hold true in
real-world recogniser deployment. Surely, in such case, the classification model
still make a prediction even though the query image is not a food image or is a
new type of food.

The aforementioned limitation motivates us to study the problem of detect-
ing whether the prediction should be made for incoming query image. We would
want our recognition model to be able to reject the prediction for input image
which does not belong to the known classes while still gives accurate prediction
for those that are within the classification scope. The problem of this kind is not
new and it has been studied in the past under the name novelty detection [15]
(and sometime interchangeably as outlier detection or anomaly detection). From
machine learning perspective, novelty detection problem can be approached with
one-class classification [14] where there are already many learning algorithms
available. Recently, the problem is increasingly known in the machine learning
community as an openset classification problem [17, 9]. There is, however, one
subtle difference between one-class classification and openset classification prob-
lem. In one-class classification, the task is to differentiate between a single target
class and other possible inputs. Meanwhile, in openset classification, we want to
differentiate multiple known classes from other possibilities. The challenge is
that the set of known classes might not form an obvious single class and it is
interesting if existing one-class classification technique will work in this more
challenging case.

To the best of our knowledge, there were not many attempts to studying
openset classification problem within the scope of convolutional neural network.
A seemingly straightforward mechanism for detecting if an input is beyond the
scope of training data is by means of class posterior thresholding, where a predic-
tion would not be made if the posterior probability of the most probable class
is below some predefined threshold. A more advanced approach could involve
the modelling of the activation vector, e.g., the output of the final layer of the
network. The approach is based on the observation that inputs that belong to
the same object class should have similar activation vector. Therefore, if we can
summarise and construct representative activation vector either globally or lo-
cally (i.e., having one representative for each of the data classes), we should be
able to detect if the query image actually belongs to one of the known classes by
comparing their activation vectors. The work in [1] took this route and modelled
the representative using the mean activation vector computed over correctly clas-
sified examples in each class. The prediction is rejected if the distance of input’s
AV is too far from the mean AV.
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We shall also take this route but extend the data description model into a
more complex one by using the Support Vector Data Description. Hopefully, the
complex data boundary creates by the SVDD might be beneficial. Further, our
work differ from [1] in that their analysis was based on activation values from the
penultimate layer of the network while our approach models the final activation
vectors directly. We believe that the relatively lower dimensional nature of the
final activation vectors, which scales with the number of classes might better
suit our modelling choice.

The rest of the paper is organised as followed. Background and the details
of the proposed SVDD-based novel instance detection approach are presented in
Section 2. Section 3 presents the empirical studies and discussion of the results.
Section 4 presents the concluding remarks and outlines future research direction.

2 Background and Methods

Formally, constructing a classifier is a task of inferring a function f : X → Y ,
which maps instances in a feature set X to an instance in label set Y using a
subset of examples in the form of (xi, yi)

N
i=1 pairs independently and identically

(i.i.d) drawn from the joint distribution D : X × Y . The goal of the learning is
to be able to use the resulting classifier f(·) for assigning y ∈ Y to an unseen
query instance xq from X with high accuracy. In classical setup, we implicitly
assume that the query point is also from X. However, such assumption is quite
unrealistic for real world classification model deployment where there is little
guarantee that the query input will be one of the instance in X. And we would
like to detect when this happens.

Our approach for detecting whether xq is beyond the classification scope
relies on the analysis of the final activation vector: the vector of output from
the final layer of the neural network f(·). We denote the activation vector of an
input image xi by f(xi) = vi = [v1, . . . , vK ]. Usually, given a classification task
of K target classes, there will be K output nodes. Accordingly the activation
vector is a real-valued vector in <K . Often, the output values from the final layer
is normalised such that

∑K
j=1 v

j = 1.

2.1 Convolutional Neural Networks

Before proceeding, we would like to first outline the architectures of the deep
neural networks employed. A convolutional neural network is a classifier which
can be divided into two parts: the convolutional layers and the fully connected
layers. The convolutional layers part is responsible for extracting visual features
from the images while the fully connected layers takes visual features extracted
by the convolutional layers and assigns class label to the image. Various CNN
architectures published to date differ from each other primarily at the convolu-
tional layers level. It has been empirically shown that abstract visual features
(especially those found at the very first convolutional layers) are high level fea-
tures and are shared among various kind of visual recognition tasks [21]. In
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practice, the weights of the convolutional layers can be transferred from some
pretrained networks of which the weights were sufficiently learnt from massive
visual datasets and should provide a good starting point for further fine tun-
ing. In this work we employed four well-known deep convolutional architectures
trained on ImageNet dataset, namely VGG16 and VGG19[18], ResNet50 [6] and
DenseNet121 [8]. The weights of the convolutional layers were transferred and
were frozen during training and only the weights of the fully connected layer was
trained via the standard back-propagation methodology. Our fully connected
network is composed of an input layer with 256 nodes, a hidden layer with 64
nodes and an output layer with 20 nodes. The weights from input to hidden and
hidden to output layer are subjected to 0.3 dropout rate. Activation functions in
the input and hidden layers were the sigmoid while the softmax function is used
in the output layer. We trained the fully-connected network using batch size of
16 and small learning rate of 10−5.

2.2 Activation Vector Data Description model

To differentiate between activation vectors belonging to the set of known classes
and those from the unknowns, we study the idea of employing the Support Vector
Data Description (SVDD) [19] well used in the area of one-class classification to
model activation vectors from the known classes. Intuitively, SVDD starts with
a hypersphere of radius R centred at a. The objective is to find a hypersphere
with minimum radius which also encloses all of the data. Formally, the objective
of SVDD is to minimise the following loss function: L(R,a) = R2 and subject
to ||vi − a||2 ≤ R2,∀i. The above formulation is rather rigid such that requiring
all vi to lie in the hypershere could be difficult in real world usage where some
outliers exist. To mitigate the problem, slack variable ξi ≥ 0 could be intro-
duced into the formulation, yielding an objective function in its primal form:
Lprimal(R,a) = R2 + C

∑
i ξi subject to ||vi − a||2 ≤ R2 + ξi,∀i. Here C is the

hyperparameter which controls the trade-off between the volume of the hyper-
sphere and errors. The new formulation expresses the fact that almost all data
(the activation vectors in our case) is required to fall within the hypersphere.
Following [19], minimising the primal is equivalent to maximising its dual form:

Ldual(α) =
∑
i

αiκ(vi,vj)−
∑
i,j

αiαjκ(vi,vj) (1)

subject to 0 ≤ αi ≤ C and
∑

i αi = 1. Here, κ(·, ·) is a positive definite reproduc-
ing kernel function that enables the construction of non-linear data boundary.
The activation vectors vi where its corresponding αi > 0 are called the Support
Vectors (SVs) for the description. In this work, we will work with the Radial Ba-
sis Function kernel (RBF) given by κ(vi,vj) = exp(||vi − vj ||2)/2σ2. We used
σ = 2−4 throughout the experiments. Accordingly, a test image xq is considered
novel if the distance of its vq from the SVs, given by∑

i∈SV s

αi exp
( ||vq − vi||2

2σ2

)
, (2)
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is greater than some predefined threshold ρ. Since the value of v can be very
small e.g., less than 10−10, and can cause some numerical instability, we propose
to work instead with the logarithm of v. We shall refer to the method described
above as Activation Vector Data Description (AVDD) to emphasise the mod-
elling of the activation vectors using SVDD. Algorithm 1 summarises the steps
to construct the AVDD while the steps for detecting novel instance are outlined
in Algorithm 2.

Algorithm 1 The construction of the Activation Vector Data Description.

Input: A set of activation vectors of the training data (vi)
N
i=1

Perform logarithmic transform ṽ = logv
Construct SVDD model using Eq.(1) based on the transformed (ṽi)

N
i=1

Output: Optimised (αi)
N
i=1

Algorithm 2 The openset detection step.

Input: An activation vector of the test data (vq) and parameters of AVDD (αi)
N
i=1

Perform logarithmic transform ṽq = logvq

Calculate distance of ṽq from the support vectors (ṽi)i∈SV s using Eq.(2).
if distance > ρ then
ŷq = “novel instance”

else
ŷq = arg maxj ṽ

j
q

end if
Output: ŷq

3 Empirical evaluations

We will now study the effectiveness of the proposed AVDD detection method
in openset classification problem. The main question is how well the proposed
method identify unknown input instance while also being able to recognise in-
stances from target classes. We shall compare the detection performance of our
proposed method with two commonly used baselines. The first baseline is the
simplest mechanism for novelty detection. The scheme rejects the prediction of
input xq if the class posterior probability of the most probable class turns out
to be less than some predefined threshold, e.g., maxj v

j
q < θ. We will refer to

this method as Class Posterior Thresholding (CPT). The second baseline in-
volves the calculation of Mean Activation Vectors (will be referred to hereafter
as MAV method) for each class. The approach then rejects the prediction if the
activation vector of the query vq is too different from the mean activation vec-
tor of the predicted class, e.g., dist(vq, µŷq

) > β. For simplicity, we considered
standard Euclidean distance for similarity measurement.
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Table 1. The datasets used in this study are divided into three groups. FOOD20 is
used to train the recognition model. OPEN-FOOD is used to test the capability of the
model in detecting unknown but related objects. OPEN-OBJECT is a set of unrelated
objects.

Dataset Class labels

FOOD20 rice, eels on rice, pilaf, sushi, chicken rice, fried rice, toast,
#instances 3338 croissant, roll bread, hamburger, pizza, sandwiches,
#classes 20 udon noodles, spaghetti, Japanese pancake, takoyaki, gratin,

cutlet curry, potato salad

OPEN-FOOD chicken-and-egg on rice, pork cutlet on rice, beef curry,
#instances 1396 tempura bowl, bibimbap, raisin bread, chip butty, beef noodle,
#classes 10 tensin noodle, fried noodle

OPEN-OBJECT apple, bird, car, carrot, cat, dog,
#instances 301 doll, fish, orange, plane
#classes 10

3.1 Datasets and protocol

The food images used in this study are from the UECFOOD100 dataset [11]. The
original dataset contains visual images of 100 Japanese food categories. Region
Of Interest (ROI) information is provided for every image. Our preprocessing
steps involve extracting food images according to the ROIs and resizing the
image to 224×224 pixels to match the input requirement of the VGG16 network.

We randomly sampled 20 food classes from the dataset for our experiment.
We will refer to this set of data as FOOD20 dataset. To evaluate the novelty
detection performance, we set apart another 10 classes from UECFOOD100,
called OPEN-FOOD and another 10 classes of general objects images from Im-
agenet dataset [3] which are irrelevant to food called OPEN-OBJECT. Table 1
summarises the datasets used in this study.

3.2 Results: performance on known classes

We first want to establish a closed set accuracy. The accuracy is identical to the
accuracy obtained in the idealised supervised learning scenario where testing
data are from the same data distribution as that of the training data used to
train the model. To do this, we randomly split FOOD20 data into training
and testing set using 90/10 percent ratio. We trained the models until they
sufficiently converged on the training data. We then validated theirs performance
on the remaining 10 percent of data and recorded the classification accuracies.
We note that in this case the models are allowed to predict all of the testing
examples without employing the novelty filtering mechanism. We repeated the
aforementioned procedure for 10 repetitions in order to get reliable statistics.
Table 2 reports the average top-1 and top-5 classification accuracies together
with their standard errors of the four CNNs employed.

We observed that top-1 accuracies of all CNNs are well above 80% except
for DenseNet121 which slightly lagged behind. In general, there seems to be
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Table 2. Top-1 and Top-5 closed set accuracies of four convolutional neural networks
employed in this study.

VGG16 VGG19 ResNet50 DenseNet121

Top-1 accuracy 83.34 ± 1.48 82.68 ± 1.91 86.71 ± 1.45 76.66 ± 1.84
Top-5 accuracy 97.36 ± 0.07 96.61 ± 1.03 97.37 ± 1.21 94.61 ± 1.14

some confusion among similar kind of food e.g., rice-based dishes. Meanwhile,
the top-5 performances from all models are quite impressive with accuracies
exceeding 97%. Although, the top-5 performances are acceptable, we believe that
more sophisticated technique can surely be incorporated into the classification
model to enhance the top-1 predictive performance and we plan to do so in
the subsequent work. The results are also inline with the results reported in the
original paper of the dataset [10]. This suggests that the CNN architectures used
in this study are deemed suitable for the task as all were capable of learning the
regularities in the data to some extent. Next, we shall turn to study the effect
of novelty detection mechanism on the performance of the chosen CNN models.

3.3 Results: novel classes detection

In this section we shall evaluate the proposed novelty detection mechanism. We
would like to quantify the error that each of the comparing mechanisms makes
during the detection process. There are two types of error: type 1 and type 2
error. Type 1 error occurs when the detector thinks that query image is from
a novel class but in reality the query is from one of the known classes. Type
2 error occurs when the query image is indeed outside the classification scope
but the detector thinks that it is not. A good way to summarise both errors
graphically is by constructing a Receiver Operating Characteristic (ROC) curve
[4]. We followed the same training protocol as described above but instead of
predicting class labels during testing, we mixed the remaining 10 percent of
FOOD20 data held out for testing with data from OPEN-FOOD to get the first
set of open data, and with OPEN-OBJECT to get the second open dataset. The
task is then to tell whether images in the mixed testsets are the images from the
held-out FOOD20 or not. We repeated the experiment for 10 repetitions while
recording True Positive Rate and False Positive Rate in each run. The average
ROC curves of the three mechanisms combined with four respective CNNs are
presented in Figure 1.

From the results, we notice that detecting unknown objects based on activa-
tion vectors, either by MAV approach or AVDD approach, is more effective than
the standard CPT method. We also see that AVDD was better than both MAV
and CPT methods by a large margin in both of the open datasets, partly thanks
to its non-linear data boundary. We speculate that the similarities between some
of the classes in FOOD20 and OPEN-FOOD, e.g., chicken rice vs chicken-and-
egg on rice, might contribute to the poor performance of CPT. Meanwhile, MAV
method might not be delicate enough to differentiate between two different AVs
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Fig. 1. The ROC curves for the three novelty detection mechanisms on OPEN-FOOD
(top) and OPEN-OBJECT (bottom), together with their associated AUCs.
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(a) VGG16
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(b) VGG19
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(c) ResNet50
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(d) DenseNet121
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(e) VGG16
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(f) VGG19
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(g) ResNet50
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(h) DenseNet121

that happened to have the same Euclidean distance from the mean. This sug-
gests that the proposed mechanism is quite promising in detecting novel classes
for various CNN-based food classification models in real-world usage.

The ROC curve summarises the detection performance at various threshold-
ing values. Still, one question remains unanswered namely, how do we choose the
cutoff threshold sensibly? It is somehow unrealistic to assume there exists open
validation set for threshold selection as by definition the possibilities of instances
in the openset are endless. For the posterior thresholding baseline, i.e., CPT in
this study, the threshold reflects our requirement for classifier’s confidence which
varies from task to task. For less sensitive task we could, for example, aim for
θ ≈ 0.9 while in more critical situation we might want to set θ a little bit higher.
For MAV method, the determination of cutoff threshold is less straightforward
as the distance measure lacks probabilistic semantics, and we think this is one
of the difficulty associated with this kind of approach. Interestingly, for AVDD,
we observed that the distances of AVs of novel points from the support vectors
mostly concentrate at some value. This allows us to select good cutoff threshold
using only a small set of open data.

We then investigated whether or not input instances from OPEN-OBJECT
dataset can be used to facilitate the selection of ρ, the cutoff threshold. According
to the concentration phenomenon mentioned earlier, we set ρ to be the distance
of an AV of a random example from OPEN-OBJECT from the support vectors,
minus some small number e.g., 0.0001. This is to compensate the tiny variance
associated with the distances of AVs of other instances from OPEN-OBJECT
dataset. The heuristic is sensible for two reasons. First we did not assume the
availability of novel food images since if we have such data we could have already
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Table 3. Top-1 and Top-5 open set accuracies of the convolutional neural net-
work paired with each respective detection mechanisms on FOOD20 + OPEN-FOOD
dataset. Closed set performances are included for reference.

Methods Top-1 Top-5 OPEN-FOOD recognition rate

VGG16 + AVDD 83.34 ± 1.48 97.36 ± 0.07 99.78 ± 0.07
VGG16 + MAV 73.73 ± 5.55 79.76 ± 8.12 58.08 ± 16.17
VGG16 + CPT 66.46 ± 1.85 69.04 ± 2.31 72.06 ± 1.11

VGG16 (closed set) 83.34 ± 1.48 97.36 ± 0.07 N/A

ResNet50 + AVDD 82.51 ± 2.35 89.06 ± 2.71 100.00 ± 0.00
ResNet50 + MAV 76.54 ± 3.82 79.72 ± 4.74 63.62 ± 9.55
ResNet50 + CPT 83.05 ± 1.82 89.82 ± 1.47 36.48 ± 1.44

ResNet50 (closed set) 86.71 ± 1.45 97.37 ± 1.21 N/A

included it in the training set. Second, OPEN-OBJECT is publicly available and
can be obtained quite easily without additional overhead. We adopted the same
mechanism for setting β, the threshold for MAV. The cutoff thresholds of CPT
was simply set to θ = 0.9. We then evaluate the threshold selection heuristic by
measuring an open set accuracy which is the ratio of instances, which were not
caught by the detection mechanism and were also correctly classified, over the
total number of test instances in FOOD20. Due to page limit, we present the
open set performances of the three detection methods combined with VGG16
and ResNet50 using FOOD20 + OPEN-FOOD dataset in Table 3.

From the results, we see that all detection mechanisms incurred a slight
drop in both top-1 and top-5 accuracies. This is expected though because some
legitimate predictions might have been discarded by the detection mechanisms.
Still, we observe that AVDD, among the three methods, was able to retain
the top-1 and top-5 accuracies better while also being effective in detecting
novel inputs. The results also validated the usefulness of the threshold selection
heuristic and hinted that VGG16 + AVDD might be a good pair for the task.

4 Conclusions

We studied a novel food categories recognition for convolutional neural networks.
Our method relies on the construction of data description model by means of
the support vector data description. The model rejects the prediction and alerts
that the input is from unknown food class if the activation vector of the query
image is too different from the model. The empirical study was setup to com-
pare the effectiveness of the proposed method with the traditional baselines of
class posterior thresholding and mean activation vector methods. The detection
capability of the proposed method was shown to be promising. What remains
unexplored in this work is how to further make use of the novel objects. One
possibility is to combine a so-called self learning methodology to query similar
images from image search engine while extracting label from the most probable
image tags and use the new information to retrain the recognition model.
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