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Abstract. Recent advances in mobile computing devices enable smart-
phone an ability to sense and collect various possibly useful data from a
wide range of its sensors. Combining these data with current data min-
ing and machine learning techniques yields interesting applications which
were not conceivable in the past. One of the most interesting applications
is user activities recognition accomplished by analysing information from
an accelerometer. In this work, we present a novel framework for classify-
ing physical activities namely, walking, jogging, push-up, squatting and
sit-up using readings from mobile phone’s accelerometer. In contrast to
the existing methods, our approach first converts the readings which are
originally in Cartesian coordinate system into representations in spheri-
cal coordinate system prior to a classification step. Experimental results
demonstrate that the activities involving rotational movements can be
better differentiated by the spherical coordinate system.

Keywords: Activity recognition, Classification, Spherical coordinate sys-
tem

1 Introduction

Advances in semi-conductor and sensors technology foster the development of
practical wearable devices. Many of such devices, for example a heart rate moni-
tor or a GPS unit, can be easily spot in our daily life activities. People use them
either for recreational, health or security purposes. The interesting thing is that
raw data recorded by those devices can often be useful in understand the nature
of the activities. With the help of data analysis techniques currently available,
we can now gain more insights into regularities and patterns in the data.

The mobile phone industry also benefits from the technological advancement.
We now see manufacturers packed a number of sensors into its mobile phones.
Unlike wearable devices which is quite specific to its task, mobile phone is more
ubiquitous. This leads to the idea of alternatively using mobile phone to sense
the world instead of using specialised wearable devices.

There are increasing number of applications which make use of sensory data
gathered from mobile phone sensors. For example, [10] used mobile phone data
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Fig. 1. An illustration of an accelerometer of a typical mobile phone. The sensor mea-
sures accelerations in x, y, z axes.

to detect person’s mode of transportation. Readings from mobile phone’s ac-
celerometer can be used to signal the falling of elderly people [4]. Similarly, [6]
proposed a methodology for efficiently recognising human activities as well as
a method for detecting the falling. A work in [5] studied the using of mobile
phone’s GPS unit together with predefined points of interest for inferring user’s
activities based on current position of the user. Along the same line, a combina-
tion of an accelerometer and a gyroscope was used to recognise daily activities
such as walking, standing and sitting [12]. Also, [3] proposed a method to detect
walking as well as counting steps using smartphone’s sensory data. Apart from
sensory data from mobile phone, [8] studied activity classification using pressure
sensors attached to five different spots on the body.

In this work, we are interested in inferring physical activities using data
readings from mobile phone’s accelerometer. Briefly speaking, an accelerometer
is an electro-mechanical sensor used for measuring acceleration. The sensor is
composed of a tiny mass attached to springs. A change in acceleration causes
the springs to compress or extend, and the degree of compression/extension is
translated to acceleration accordingly. In a typical mobile phone, accelerations
in the x, y, z axes are usually provided. A picture of an accelerometer and its
axes is illustrated in Figure 1.

A notable work that pioneered activities recognition using data from an ac-
celerometer is probably the one in [9]. In that work, a special accelerometer unit
is paired with an IPAQ personal digital assistant for data processing purpose.
The work considered the recognition of eight different daily activities. The au-
thors found that it is sufficient to use the mean, the standard deviation and the
correlation of readings in the x-axis, the y-axis and the z-axis of the accelerome-
ter to correctly recognise most of the activities. From that moment, researchers
then started to investigate the topic from different perspectives and in different
environments. The work in [12] compared various classification algorithms for
activities recognition. They found that k-NN and boosting algorithms are among
the top performer for the task. Studies that focus on the effect of smartphone’s
mounting positions on recognition rate can be found in [2] and [1].

The work which are most related to our work are probably the work in [7] and
[11]. Both studied the recognition of physical activities using only the accelerom-
eter. The empirical results using different classification algorithms suggested that
accurate recognition can be achieved only with the data from the accelerometer.
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However, and rather interestingly, all of the above work only consider the data
represented in the Cartesian coordinate system. Motivated by the fact that a
spherical coordinate system is often used to represent data which contains rota-
tional movements, we postulate that the spherical coordinate system might be
more suitable in capturing the dynamics of activities which involve rotational
movements compared to the typical Cartesian coordinate system. Accordingly,
we consider the following points to be our contributions.

– We investigate the using of the spherical coordinate system to represent the
data instead of the typical Cartesian coordinate system.

– We empirically study an appropriate time frame 1 for extracting data from
a stream of sensor readings.

– We extensively test the proposed representation using five different well-
known classifiers.

The rest of the paper is organised as follow. Section 2 presents our approach
that uses the spherical coordinates to represent the data readings. Section 3 then
presents empirical evaluations while Section 4 concludes the study.

2 The Proposed framework

The movement of smartphone during activity recognition can be of both trans-
lational and rotational motions. For example, the movements for sit-up and
squating are rather similar except that the movement for sit-up additionally
contains rotational motions. Differentiating the two activities can be challeng-
ing. Motivated by a capability to capture rotational motions, in this work we
will investigate the using of a spherical coordinates to represent our data. The
spherical coordinate system is a generalisation of a polar coordinate system to
three dimensional vector space. Specifically, a point (x, y, z) in the Cartesian co-
ordinate system can be converted to a point (r, θ, ϕ) in the spherical coordinate
system by

r =
√

x2 + y2 + z2 (1)

θ = arccos
z

r
(2)

ϕ = arctan
y

x
(3)

Essentially, the quantity r in (r, θ, ϕ) tuple represents the length of a vector
measured from the origin, θ represents an angle between the vector and the z-
axis while ϕ represents an angle that the projection of the vector on the xy plane
makes with the x-axis.

One interesting property of the spherical coordinate system is that the dis-
tance between any two points is no longer a straight line. Instead the distance
is the length of the curvature which is known as a geodesic. This non-linearity
1 Later on, we will use the term ‘window’ and ‘time frame’ interchangeably.
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Table 1. A list of 9 features extracted from raw data collected from the smartphone.

Feature Calculation Description
µr

∑n
i=1 ri
n

The mean of r
µθ

∑n
i=1 θi
n

The mean of θ
µϕ

∑n
i=1 ϕi

n
The mean of ϕ

σr

√∑n
i=1(ri−µr)2

n−1
The standard deviation of r

σθ

√∑n
i=1(θi−µθ)

2

n−1
The standard deviation of θ

σϕ

√∑n
i=1(ϕi−µϕ)2

n−1
The standard deviation of ϕ

corr(r, θ) cov(r,θ)
σrσθ

The correlation between r and θ

corr(r, ϕ) cov(r,ϕ)
σrσϕ

The correlation between r and ϕ

corr(θ, ϕ) cov(θ,ϕ)
σθσϕ

The correlation between θ and ϕ

of the distance measure is beneficial for the case of non-linearly separable data.
Therefore, distance-based classifiers such as a nearest-neighbour classifier might
be able to take advantage of this transformation. Further, as mentioned earlier,
we believe that geodesic distance is also more natural for this task since we are
interested in movements which is composed of rotational elements.

Next, we will follow the steps previously used in [9] for summarising the
stream of sensor readings. The steps involve dividing the stream of data into
equal window of length n seconds. Commonly in the literature including that
found in [9], a 10-second window is used. In this work, we will additionally
investigate windows of different lengths namely 5, 10, 15 and 20 seconds. A set
of sensor readings that fit in one time frame will undergo feature extraction steps
in order to produce a point representation for the readings in that time frame.
To extract the features, we calculate the means, the standard deviations of each
of the three variables, i.e., r, θ and ϕ, as well as the correlations between all pairs
of the variables. This, in total, results in a 9-dimensional point representation for
the raw sensor readings in one time frame. Although, other statistical features,
i.e., max, min, inter quartile range, energy, can be extracted from the set of
sensor readings, we empirically observed that these 9 features can adequately
capture the dynamics of the activities under consideration. The finding is also in
agreement with [9]. Table 1 summarises the 9 features extracted from one time
frame of length n.

In summary, our framework involves first converting the readings into the
spherical coordinates. A set of 9 features are then extracted from the converted
data producing a set of 9-dimensional input vectors. The set of input vectors
together with manually assigned class labels are used to train a classifier.

3 Experiments

3.1 Data collection
We manually collected data by asking volunteers to perform each of the physical
activities namely, walking, jogging, push-up, squating and sit-up for 50 repeti-
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(a) Walk-
ing and
Jogging

(b) Squat-
ting

(c) Sit-up (d) Push-up

Fig. 2. Smartphone mounting positions for each of the activities.

tions. In each repetition we asked the volunteers to exercise for 20 seconds. We
mounted the mobile phone on the right shoulder of the participants as shown in
Figure 2.

During data collection, we sampled data from the accelerometer sensor which
are accelerations in the x-coordinate, the y-coordinate and the z-coordinate using
1Hz sampling rate. We converted the raw readings into the spherical coordinates
so that the 9 features can later be extracted. In total, there are 5000 seconds of
sensory data available (1000 seconds for each of the five activities). Now, labelled
datasets of different size can be constructed from the sensory data depending on
the length of the time frame. For example, using 10-second time frame would
result in a dataset containing 100 input instances for each class, while using
20-second time frame would produce 50 input instances for each class.

3.2 Protocol

In this study, we are interested in whether transforming accelerometer readings
into the spherical coordinate representation is beneficial. To evaluate this, we
will compare the performances obtained from five well-known classifiers namely,
k-nearest neighbour, linear discriminant analysis, naive Bayes, Support Vector
Machine with linear kernel and Support Vector Machine with polynomial degree
2 operating in the Cartesian coordinate system and the newly proposed spherical
coordinate system. We note that, due to the small sample size nature of the data,
we will use leave-one-out cross validation technique to measure the predictive
performance of the classifiers. In addition, we are also interested in the effect of
the length of the time frame on the classification accuracy. For this purpose, we
will additionally study the comparative performance of the classifiers learning
from data sets produced by setting the time frame to 5 seconds, 10 seconds, 15
seconds and 20 seconds, respectively.

3.3 Results

Firstly, we would like to establish a window length that gives the best recognition
performance. Table 2 summarises recognition accuracies for 4 different windows
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Table 2. Mean accuracies (%) of the two coordinate systems as a function of window
length averaged over all classifiers. Boldface entries indicates the best window length.

Window length (seconds) Cartesian Spherical
5 84.35 ± 12.49 74.63 ± 12.33
10 87.72 ± 10.76 85.03 ± 11.74
15 88.69 ± 9.34 88.40 ± 9.98
20 89.59 ± 8.75 90.33 ± 9.08

Table 3. Predictive accuracy of 5 classifiers. Window length is fixed to 20 seconds.
Boldface highlights the coordinate system in which each of the classifier works best.

Classifier Cartesian Spherical
5-NN 97.20 100.00

Decision tree 98.00 95.60
SVM (Linear Kernel) 96.80 100.00

SVM (Polynomial Kernel degree 2) 98.80 99.60
Naive Bayes 97.20 99.20

Linear Discriminant Analysis 97.60 100.00

length tested. We can see, from the table, that larger time frame is generally
better compared to the smaller ones in both coordinate systems. Comparing the
two coordinate systems, we observe that for smaller time frame the Cartesian
coordinate system has an upper hand but as window length increases to 20
seconds we see that using the spherical coordinate system is preferable. The
accuracy averaged over all the classifiers is 90.33% for the spherical system while
the accuracy for the Cartesian coordinate system slightly lags behind. We did not
test window lengths beyond 20 seconds but we speculate that the result might
not be worse than the 20 seconds mark. Moreover, as we shall subsequently see
that using 20 seconds window is already very satisfying as we achieved perfect
classification performance. Therefore, increasing the length of the time frame
might be overkill.

Next, we take what we have learnt from the previous experiment that the 20
seconds time frame yielded the best averaged performance. In this experiment,
we fix the window length to 20 seconds and compare the performances of the
two coordinate systems using five classifiers. The classification accuracies of the
five classifiers trained using data represented in the Cartesian and the spherical
coordinate systems are summarised in Table 3. From the table, it is quite clear
that the spherical coordinates representation gives relatively better predictive
performance compared to the Cartesian coordinates counterpart. Interestingly,
we also see that three out of five classifiers namely, 5-NN, SVM with linear kernel
and Linear Discriminant Analysis, all learnt from the data represented in the
spherical coordinate system achieved perfect classification results.

To gain further insights regarding why using spherical coordinates is superior
to using the Cartesian coordinates, Table 4 presents the confusion matrix of the
5-NN classifier operated in the Cartesian coordinate system where it achieved
97.2% classification accuracy. We noticed that the 5-NN misclassified sit-up as
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Table 4. Confusion matrix for the 5-NN under the Cartesian coordinate system.

Walking Jogging Squatting Push-up Sit-up
Walking (predicted) 50 0 0 0 0
Jogging (predicted) 0 50 0 0 0
Squatting (predicted) 0 0 47 0 3
Push-up (predicted) 2 0 0 48 0
Sit-up (predicted) 0 0 2 0 48

squatting and vice-versa. It is worth noting that the orientation of the smart-
phone in these two activities are almost identical (see Figure 2). Further, the
movement of the device during the action are also similar, with an exception
that there exists rotational movements around the hip when performing sit-up.
It seems that the Cartesian representation cannot capture this rotational move-
ments adequately. However, this does not seem to be a problem for the spherical
representation. The claim is confirmed by the perfect predictive performance
of the 5-NN operates in the spherical coordinate system. The explanation also
applies to the case of walking and push-up. For the sake of exposition, let us con-
sider 2-dimensional trajectories of a smartphone in Figure 3. The blue trajectory
contains rotational elements while the red one does not. If we were to extract,
for example, the mean of x and y components from the readings (represented by
the blue and red dots) from the two trajectories under the Cartesian coordinate
system, we would end up with the similar means. As such, differentiating the
two trajectories using the means would be problematic. However, converting the
reading into the polar coordinates (a special case of the spherical coordinates in
2D) can clearly alleviate the problem since the means of r and θ from the two
trajectories are quite distinct. We believe that this is a reason why working in
the spherical coordinate system is desirable.

Overall, based on the empirical evidences we can conclude that transforming
sensor readings from the Cartesian coordinates to the spherical coordinates is
advantageous for physical activities recognition especially when the activities
involve rotational motions.

4 Conclusion and Future work

In this work, we studied comparative performance of representing accelerome-
ter readings in the Cartesian and the spherical coordinate system for human
activities recognition. As part of the experiment we also investigated a suit-
able window length for summarising a stream of sensory data sampled from
the accelerometer. Experimental results based on recognition rates of five well-
known classifiers suggest that a 20 seconds window and the spherical coordinate
system is well-suited for the task, and especially so for capturing the dynam-
ics of physical activities that involve rotational motions. Future work includes
the relaxation on the mounting position of the smartphone. For that purpose,
a rotation-invariant data representation is required, so that the accelerometer
readings are relatively the same regardless of the position of the mobile device.
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Fig. 3. Two trajectories that produce similar features under the Cartesian coordinate
system but not under the polar coordinate systems as well as the proposed spherical
coordinate system.
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