Scikit-learn & a little bit of
machine learning

Jakramate Bootkrajang

Outline

wuzrinluga Scikit-learn
ABNSRAGY

Classification

Regression

Clustering

Performance evaluations

Scikit-learn

lausi3fiaaalrini5vin data analysis and machine learning J1ediu
Opensource

Built on Numpy, Scipy and Matplotlib

Supports

Data classification and regression
Data clustering

Dimensionality reduction

o Performance evaluation

e http://scikit-learn.org/stable/index.html

O O O

"y

a3
TN

. 2,
.
...
.
.
.

;A
.,-;:.
. '—

3w

Classification

Identifying to which category an object
belongs to.

Applications: Spam detection, Image
recognition.

Algorithms: SVM, nearest neighbors,
random forest, ... — Examples

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute
associated with an object.
Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso,
— Examples

Clustering

Automatic grouping of similar objects into
sets.

Applications: Customer segmentation,
Grouping experiment outcomes

Algorithms: k-Means, speciral clustering,

mean-shift, ... — Examples

Installation

Scikit-learn requires:

« Python (>=2.7 or >=3.4),
« NumPy (>=1.8.2),
« SciPy (>=0.13.3).

Install via pip

pip install -U scikit-learn

Data classification

Given a set of (feature, label) pairs find a function that assigns label to unseen
data (feature) with high accuracy.

Data can be

Image
A set of attributes representing object (#Wil2&811 Haberman'’s data)

A time-series (for example, sound)
etc.

Labels are usually given by experts

Representing data point and labels

Scikit-learn uses 2D-array for data points

X =1[30, 62, 5], [33, 70, 12],, [45, 65, 9]]

And an array for labels

y=[1,2, ... 1]

Example of classification models

e K-nearest neighbour
e Decision Tree
e Neural network

K-nearest neighbour (KkNN)

Assumption: Label of nearby data should be the same.

Need to define the "closeness’

Usually “closeness’ is defined as Euclidean distance between two data points.

To predict the label of unseen data, we find its k-closest training data points and
take the majority label

Visual example

ref: https://helloacm.com/a-short-introduction-to-k-nearest-neighbors-algorithm/

Two types of label voting

Uniform voting

Distance-based voting X

KNN in Scikit-learn (1/2)

The function belongs to neighbors sub-module
To construct a classifier model we use

model = KNeighborsClassifier(n _neighbors=5, weights="uniform’)

To fit the model we call
model.fit(data, label)

KNN in Scikit-learn (2/2)

To predict a new data point

answer = model.predict(data)

To obtain the probability of the prediction

answer_prob = model.predict_proba(data)

A tiny example

>>> X = [[0], [1], [2]., [3]]
>>> y = [0, 0, 1, 1]

>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)

>>> neigh.fit(X, y)

KNeighborsClassifier(...)

>>> print(neigh.predict([[1.1]]))

0

£>1 print(neigh.predict_proba([[©.9]]))

[[0.66666667 0.33333333]]

Decision Tree

One of the most natural decision making mechanisms.

Composed of several internal decision nodes leading to final prediction

Is a Person Fit?

Age<307?

Yes?/\ No?

Eat'salot Exercises in
of pizzas? the morning?

Yes?/\No? Yes?/\No?

Unfit! Fit Fit Unfit!

Another example

More than 5
legs?
no €gs yes
s Is hiding under
2
Delicious? your bed?
no yes no yes
On back of Star of Star of
Australian 5- Charlotte’s Makes honey? Charlotte’s

cent coin? Web? Web?
no bt no yes no es no yes
Kitty cat! Echidna! Bison! Pig! Mosquito! Honeybee! Bed bug! Spider!

How tree is built ?

First, build decision node based on an attribute that gives the best split

Then choose an attribute with the second best split

and so on.

Decision Tree in Scikit-learn

Using DecisionTreeClassifier function

DecisionTreeClassifier(criterion="gini’, splitter="best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight _fraction leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
min_impurity _decrease=0.0, min_impurity split=None, class_weight=None,
presort=False)

from sklearn import tree

X-= T8, 81, 1, 11]

Y = [8, 1]

clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

v V V V

vV vV VV
vV v vV vV

v

Tree visualisation

It is possible to draw a picture of the resulting decision tree using Graphviz module

Installation

pip install graphviz

Usage

import graphviz
dot data = tree.export graphviz(clf, out file=None)

graph = graphviz.Source(dot data)
graph.render("iris")

Neural network

Inspired by the working of neurons in the brain

1
\
wl
Xl ——

1

X2

input layer
hidden layef Output of neuron = Y= f(wl. X1+w2.X2+Db)

To train a network is to learn the best weights for the task.

Neural network in Scikit-learn

MLPClassifier (with too many optional parameters)

MLPClassifier(hidden_layer_sizes=(100,), activation="relu’, solver="adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate init=0.001, power t=0.5,
max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early stopping=False,
validation _fraction=0.1, beta_1=0.9, beta 2=0.999, epsilon=1e-08,

n_iter_no_change=10)

Important parameter is hidden_layer_sizes

This specifies the number of hidden layers as well as the number of nodes in each
layer

Example

hidden_layer_sizes = (10,10) # two hidden layers with 10 nodes each

hidden_layer_sizes = (100,1) # one hidden layer with 100 nodes

Note: the more layers MLP has the more complex the model will be

Now for the code

>>> from sklearn.neural_network import MLPClassifier

>>> X = [[0., 06.], [1., 1.]]

>>> y = [0, 1]

>>> clf = MLPClassifier(solver='1lbfgs', alpha=le-5,
hidden layer sizes=(5, 2), random state=1)

>>> clf.fit(X, y)

prediction

>>> clf.predict([[2., 2.], [-1.
array([1, ©])

, -2.11)
-

Toy dataset

Let's compare the performance of the three classifiers on Haberman’s survival
data

However, before training we need to perform some preprocessing

>>> from sklearn import preprocessing

>>> import numpy as np

>>> X train = np.array(([([1., -1., 2.1,
S-S R b

>ie'e [O0., 1., -1.11)

>>> X scaled = preprocessing.scale(X train)

>>> X scaled

arraytLL e: =220 1a33aady,
LA 29 i sl e o e =
2 B b BCEE) B b RN B RS i)

Data preprocessing

e Data cleaning
e Filling missing values

e Data normalisation
o Normalise each attributes to have zero mean and unit variance

e Normalised data improves the learning of most models

Performance evaluation

accuracy_score() function compute correct prediction ratio

>>> import numpy as np

>>> from sklearn.metrics import accuracy score
>>> y pred = [0, 2, 1, 3

>>> y true = [0, 1, 2, 3

>>> accuracy score(y true, y pred)

0.5

Accuracy on training data: could be optimistic.

Accuracy on test data: this is what we want (test model’s ability to generalise)

Regression

Given a set of (feature, value) pairs find a function that assigns value to unseen
data (feature) with high accuracy.

Data can be

e A set of attributes representing some object (car, house)
e the value can be value of car or house

Decision Tree Regressor

>>> from sklearn import tree

>>> X = [[0 a0 b2 21

>>> y = [0 2::5]

>>> clf = tree DecisionTreeRegressor()
>>> clf = clf.fit(X, y)

>>> clf.predict([[1, 1]])

array([0.5])

target

Decision Tree Regression

1.5 o ——— max_depth=2
s i - max_depth=5
55 o data
0.5
0.0 A
—-0.5 A
o
—1.0 - o
=1.5
o
1 2 3 4 5

data

KNN for regression

label assigned to a query point is computed based on the mean of the labels of its
nearest neighbors.

from sklearn import neighbors

knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
y_ = knn.fit(X, y).predict(T)

Here, T is a new data point that needs to be predicted.

Neural network for regression

There is a function called MLPRegressor

MLPRegressor(hidden_layer sizes=(100,), activation="relu’, solver="adam’,
alpha=0.0001, batch_size="auto’, learning rate="constant’, learning _rate init=0.001,
power t=0.5, max_iter=200, shuffle=True, random _state=None, tol=0.0001,
verbose=False, warm_start=False, momentum=0.9, nesterovs _momentum=True,

early stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10)

The usage is similar to MLPClassifier

mlp = MLPRegressor(algorithm="'sgd’, max_iter=100, activation="relu’,
random_state=1, learning_rate_init=0.01,
batch_size=X.shape[0], momentum=momentum)

mlp.fit(X,y)

mlp.predict(newX)

Toy data

Boston dataset

e Concerns housing values in suburbs of Boston.
e Attribute Information:
1. CRIM per capita crime rate by town
2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
3. INDUS proportion of non-retail business acres per town
4. CHAS Charles River dummy variable (= 1 if tract bounds
river; O otherwise)
5. NOX nitric oxides concentration (parts per 10 million)

Boston data (cont.)

6. RM average number of rooms per dwelling
7. AGE proportion of owner-occupied units built prior to 1940
8. DIS weighted distances to five Boston employment centres

9. RAD index of accessibility to radial highways

10. TAX full-value property-tax rate per $10,000

11. PTRATIO pupil-teacher ratio by town

12. B 1000(Bk - 0.63)*2 where Bk is the proportion of blacks by town
13. LSTAT % lower status of the population

14. MEDV Median value of owner-occupied homes in $1000's/i{target)

Boston task

Download the data from

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

The task is regression task for estimating new house in Boston area.

This can be applied for estimating values of second hand car.

Performance evaluation

Usually the performance is measured by Mean Square Errors (MSE)

1= N
MSE = —) (V; - Y;)%
2 20
Or in scikit-learn N

metrics.explained_variance_score (y_true, y pred) Explained variance regression score function
metrics.mean_absolute_error (y_true, y_pred) Mean absolute error regression loss
metrics.mean_squared_error (y_true,y pred[,...]) Mean squared error regression loss
metrics.mean_squared_log_error (y_true, y_pred) Mean squared logarithmic error regression loss
metrics.median_absolute_error (y_true, y_pred) Median absolute error regression loss

metrics.r2_score (y_true, y_pred[, ...]) R2 (coefficient of determination) regression score function.

Data clustering

Given a set of data without labels, find natural grouping of the data

Use cases

- We have no idea about the data.
- See some characteristic before reaching out for help from experts.
- Usually the first analysis task before performing classification.

Data clustering algorithms

MiniBatchKMeansﬂlﬁnityPropagation MeanShift SpectralClustering Ward AgglomerativeCIustting DBSCAN Birch GaussianMixture

K-mean algorithm

Input: & (the number of clusters),
D (a set of lift ratios)
Output: a set of k clusters
Method:
Arbitrarily choose & objects from D as the initial cluster centers;
Repeat:
1. (re)assign each object to the cluster to which the object is
the most similar, based on the mean value of the objects in the
cluster;
2. Update the cluster means, i.e., calculate the mean value of
the objects for each cluster
Until no change;

Some visualisation

KMeans Iteration:

Total Within Cluster Sum of Squares:

250k

200k

150k

100k

50k

1 I I 1

2 4 6 8 10
Kmeans Iterations

K-means in Scikit-learn

CO~NOOTLH WN =

S TR A
N — O WO

from sklearn.cluster import KMeans
from pylab import *

X = concatenate((randn(20,2), randn(20,2)+2, randn(20,2)-2))

model = KMeans(n_clusters=3)
model . fit(X)

scatter(X[model.labels_ == 0,0], X[model.labels_ == 0,1], color
scatter(X[model.labels_ == 1,0], X[model.labels_ == 1,1], color
scatter(X[model.labels_ == 2,0], X[model.labels_ == 2,1]

show()

=lkl)
=Ibl)

Performance evaluation

Silhouette coefficient s(z) = ({)() Ef() Y

’I’L

G — Ly s(w)

n

Averaging all s(x) to get the

. ,::_:;_::\ Silhouette coefficient of the dataset
cohesion @

a(x): average distance separation Score is between -1 and 1

in the cluster _ Best score is 1
b(x): average distances to Worse score is -1

others clusters, find minimal

3+5

alx;,) = > = 4

 /6+8 10+ 12
b{x,)= mm(B >)
Sil(x;) ——7 4—3

7 7

The code

1 from sklearn.cluster import KMeans

2 from sklearn.metrics import silhouette_score
3 from pylab import *

4

5

6 X = concatenate((randn(20,2), randn(20,2)+2, randn(20,2)-2))
.

8 model = KMeans(n_clusters=3)

9 model.fit(X)

10

11 score = silhouette_score(X, model.labels_)
12 print(score)

