
 1 / 29

CS217: Computer
Programming Language:
Matplotlib

Instructor: Jakramate Bootkrajang

 2 / 29

Outline

● Matplotlib
● Pandas

 3 / 29

Matplotlib

● Matplotlib is probably the most used Python
package for 2D-graphics.

● It provides both a quick way to visualize data
from Python and publication-quality figures in
many formats.

 4 / 29

Pyplot

● Pyplot is Matplotlib’s sub-module which takes
care of actual plotting

● pyplot provides a interface to the matplotlib
plotting library.

● It is modeled closely after Matlab™.
● Therefore, the majority of plotting commands

in pyplot have Matlab™ analogs with similar
arguments

 5 / 29

Importing pyplot

● Using import keyword

● The numpy / pyplot combo is usually used
together

 6 / 29

Plotting plot() function

● plot() is used to plot a graph given list of x
coordinate and list of y coordinate

 7 / 29

To display the plot

● Must call plt.show() function to actually
display the plot

 8 / 29

Customising the plot

● Setting color using color keyword argument
● Setting line width using linewidth
● Setting linestyle to select line style

 9 / 29

More customisation

● xlim(), ylim() to get x-axis/y-axis limits
● xticks(), yticks() to set axis ticks

 10 / 29

Adding legend

● Legend can be added using label keyword

 11 / 29

Other types of plots

● Scatter plot

 12 / 29

Barplot

● bar() function

 13 / 29

And many more

Contour

Piechart

Polar axis

 14 / 29

Pandas

● Pandas is Python package for data analysis.
● adds data structures and tools designed to

work with table-like data (similar to Series
and Data Frames in R)

● provides tools for data manipulation:
reshaping, merging, sorting, slicing,
aggregation etc.

● allows handling missing data

 15 / 29

Pandas: Essential Concepts

● A Series is a named Python list (dict with list
as value).
{ ‘grades’ : [50,90,100,45] }

● A DataFrame is a dictionary of Series (dict of
series):
{ { ‘names’ : [‘bob’,’ken’,’art’,’joe’]}

 { ‘grades’ : [50,90,100,45] }

}

 16 / 29

Reading CSV

● Importing the library using import keyword
● Reading csv using read_csv() function

 17 / 29

Exploring data

● First n items
● Or last n items

 18 / 29

Data Frames attributes

df.attribute description
dtypes list the types of the columns

columns list the column names

axes list the row labels and column names

ndim number of dimensions

size number of elements

shape return a tuple representing the dimensionality

values numpy representation of the data

 19 / 29

Data frame methods

df.method() description

head([n]), tail([n]) first/last n rows

describe() generate descriptive statistics (for numeric
columns only)

max(), min() return max/min values for all numeric columns

mean(), median() return mean/median values for all numeric
columns

std() standard deviation

sample([n]) returns a random sample of the data frame

dropna() drop all the records with missing values

 20 / 29

Selecting a column in a Data
Frame

● Method 1: Subset the data frame using
column name:
 df['sex']

● Method 2: Use the column name as an
attribute:
 df.sex

 21 / 29

Data frame groupby()

● Using "group by" method we can:
● Split the data into groups based on some

criteria
● Calculate statistics (or apply a function) to

each group

 22 / 29

Example

22

 In []: #Group data using rank
df_rank = df.groupby(['rank'])

 In []: #Calculate mean value for each numeric column per each group
df_rank.mean()

 23 / 29

Data Frame: filtering

● To subset the data we can apply Boolean indexing.
This indexing is commonly known as a filter. For
example if we want to subset the rows in which the
salary value is greater than $120K:

#Calculate mean salary for each professor rank:
df_sub = df[df['salary'] > 120000]

 24 / 29

Dataframe slicing

● There are a number of ways to subset the
Data Frame:

– one or more columns
– one or more rows
– a subset of rows and columns

 25 / 29

Slicing

● When selecting one column, it is possible to use
single set of brackets, but the resulting object will be
a Series (not a DataFrame):

● When we need to select more than one column
and/or make the output to be a DataFrame, we
should use double brackets:

#Select column salary:
df['salary']

#Select column salary:
df[['rank','salary']]

 26 / 29

Selecting rows

● If we need to select a range of rows, we can specify
the range using ":"

#Select rows by their position:
df[10:20]

 27 / 29

Method loc()

● If we need to select a range of rows, using their
labels we can use method loc():

#Select rows by their labels:
df_sub.loc[10:20,['rank','sex','salary']]

 28 / 29

Method iloc()

● If we need to select a range of rows and/or columns,
using their positions we can use method iloc():

#Select rows by their labels:
df_sub.iloc[10:20,[0, 3, 4, 5]]

 29 / 29

References

● Python for Data Analysis by Katia Oleinik
● Data Analysis with Pandas – IST256 url:

ist256.syr.edu/content/12/Data-Analysis.pptx
● http://scipy-lectures.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

