
Scikit-learn & a little bit of
machine learning

Jakramate Bootkrajang

Outline
● แนะนําโมดูล Scikit-learn
● วิธีการติดตั้ง
● Classification
● Regression
● Clustering
● Performance evaluations

Scikit-learn
● ไลบรารีที่ชวยใหการทํา data analysis and machine learning งายขึ้น
● Opensource
● Built on Numpy, Scipy and Matplotlib
● Supports

○ Data classification and regression
○ Data clustering
○ Dimensionality reduction
○ Performance evaluation

● http://scikit-learn.org/stable/index.html

Installation
Scikit-learn requires:

● Python (>= 2.7 or >= 3.4),
● NumPy (>= 1.8.2),
● SciPy (>= 0.13.3).

Install via pip

pip install -U scikit-learn

Data classification
Given a set of (feature, label) pairs find a function that assigns label to unseen
data (feature) with high accuracy.

Data can be

● Image
● A set of attributes representing object (ผูปวยใน Haberman’s data)
● A time-series (for example, sound)
● etc.

Labels are usually given by experts

Representing data point and labels
Scikit-learn uses 2D-array for data points

And an array for labels

X = [[30, 62, 5], [33, 70, 12], ….. , [45, 65, 9]]

y = [1, 2, …., 1]

Example of classification models
● K-nearest neighbour
● Decision Tree
● Neural network

K-nearest neighbour (kNN)
Assumption: Label of nearby data should be the same.

Need to define the `closeness’

Usually `closeness’ is defined as Euclidean distance between two data points.

To predict the label of unseen data, we find its k-closest training data points and
take the majority label

Visual example

ref: https://helloacm.com/a-short-introduction-to-k-nearest-neighbors-algorithm/

Two types of label voting
Uniform voting

Distance-based voting

kNN in Scikit-learn (1/2)
The function belongs to neighbors sub-module

To construct a classifier model we use

To fit the model we call

model = KNeighborsClassifier(n_neighbors=5, weights=’uniform’)

model.fit(data, label)

kNN in Scikit-learn (2/2)
To predict a new data point

To obtain the probability of the prediction

answer = model.predict(data)

answer_prob = model.predict_proba(data)

A tiny example

Decision Tree
One of the most natural decision making mechanisms.

Composed of several internal decision nodes leading to final prediction

Another example

How tree is built ?
First, build decision node based on an attribute that gives the best split

Then choose an attribute with the second best split

and so on.

Decision Tree in Scikit-learn
Using DecisionTreeClassifier function

DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,
presort=False)

Tree visualisation
It is possible to draw a picture of the resulting decision tree using Graphviz module

Installation

Usage

pip install graphviz

Neural network
Inspired by the working of neurons in the brain

To train a network is to learn the best weights for the task.

Neural network in Scikit-learn
MLPClassifier (with too many optional parameters)

MLPClassifier(hidden_layer_sizes=(100,), activation=’relu’, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10)

Important parameter is hidden_layer_sizes
This specifies the number of hidden layers as well as the number of nodes in each
layer

Example

hidden_layer_sizes = (10,10) # two hidden layers with 10 nodes each

hidden_layer_sizes = (100,1) # one hidden layer with 100 nodes

Note: the more layers MLP has the more complex the model will be

Now for the code

prediction

Toy dataset
Let’s compare the performance of the three classifiers on Haberman’s survival
data

However, before training we need to perform some preprocessing

Data preprocessing
● Data cleaning
● Filling missing values
● Data normalisation

○ Normalise each attributes to have zero mean and unit variance

● Normalised data improves the learning of most models

Performance evaluation
accuracy_score() function compute correct prediction ratio

Accuracy on training data: could be optimistic.

Accuracy on test data: this is what we want (test model’s ability to generalise)

Regression
Given a set of (feature, value) pairs find a function that assigns value to unseen
data (feature) with high accuracy.

Data can be

● A set of attributes representing some object (car, house)
● the value can be value of car or house

Decision Tree Regressor

kNN for regression
label assigned to a query point is computed based on the mean of the labels of its
nearest neighbors.

Here, T is a new data point that needs to be predicted.

Neural network for regression
There is a function called MLPRegressor

The usage is similar to MLPClassifier

MLPRegressor(hidden_layer_sizes=(100,), activation=’relu’, solver=’adam’,
alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001,
power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001,
verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10)

mlp = MLPRegressor(algorithm='sgd', max_iter=100, activation='relu',
 random_state=1, learning_rate_init=0.01,
 batch_size=X.shape[0], momentum=momentum)
mlp.fit(X,y)
mlp.predict(newX)

Toy data
Boston dataset

● Concerns housing values in suburbs of Boston.
● Attribute Information:

 1. CRIM per capita crime rate by town
 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
 3. INDUS proportion of non-retail business acres per town
 4. CHAS Charles River dummy variable (= 1 if tract bounds
river; 0 otherwise)
 5. NOX nitric oxides concentration (parts per 10 million)

Boston data (cont.)
 6. RM average number of rooms per dwelling
 7. AGE proportion of owner-occupied units built prior to 1940
 8. DIS weighted distances to five Boston employment centres
 9. RAD index of accessibility to radial highways
 10. TAX full-value property-tax rate per $10,000
 11. PTRATIO pupil-teacher ratio by town
 12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
 13. LSTAT % lower status of the population
 14. MEDV Median value of owner-occupied homes in $1000's (target)

Boston task
Download the data from

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

The task is regression task for estimating new house in Boston area.

This can be applied for estimating values of second hand car.

Performance evaluation
Usually the performance is measured by Mean Square Errors (MSE)

Or in scikit-learn

Data clustering
Given a set of data without labels, find natural grouping of the data

Use cases

- We have no idea about the data.
- See some characteristic before reaching out for help from experts.
- Usually the first analysis task before performing classification.

Data clustering algorithms

K-mean algorithm

Some visualisation

K-means in Scikit-learn

Performance evaluation

Averaging all s(x) to get the
Silhouette coefficient of the dataset

Score is between -1 and 1
Best score is 1
Worse score is -1

The code

