
chapter 9

Dictionaries and
Sets

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

More Data Structures
• We have seen the list data structure and

what it can be used for
• We will now examine two more advanced

data structures, the Set and the Dictionary
• In particular, the dictionary is an important,

very useful part of python, as well as
generally useful to solve many problems.

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Dictionaries

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

What is a dictionary?
• In data structure terms, a dictionary is

better termed an associative array,
associative list or a map.

• You can think if it as a list of pairs, where
the first element of the pair, the key, is
used to retrieve the second element, the
value.

• Thus we map a key to a value

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Key Value pairs
• The key acts as an index to find the

associated value.
• Just like a dictionary, you look up a word

by its spelling to find the associated
definition

• A dictionary can be searched to locate the
value associated with a key

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Python Dictionary
• Use the { } marker to create a dictionary
• Use the : marker to indicate key:value pairs
contacts= {'bill': '353-1234',
 'rich': '269-1234', 'jane': '352-1234'}
print (contacts)
{'jane': '352-1234',
 'bill': '353-1234',
 'rich': '369-1234'}

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

keys and values
• Key must be immutable

– strings, integers, tuples are fine
– lists are NOT

• Value can be anything

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

collections but not a sequence
• dictionaries are collections but they are not

sequences such as lists, strings or tuples
– there is no order to the elements of a

dictionary
– in fact, the order (for example, when printed)

might change as elements are added or
deleted.

• So how to access dictionary elements?

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Access dictionary elements
Access requires [], but the key is the

index!
my_dict={}

– an empty dictionary
my_dict['bill']=25

– added the pair 'bill':25
print(my_dict['bill'])

– prints 25

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Dictionaries are mutable
• Like lists, dictionaries are a mutable data

structure
– you can change the object via various

operations, such as index assignment
my_dict = {'bill':3, 'rich':10}
print(my_dict['bill']) # prints 3
my_dict['bill'] = 100
print(my_dict['bill']) # prints 100

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Dictionary keys can be any immutable object

demo = {2: [‘a’,’b’,’c’], (2,4): 27, ‘x’: {1:2.5, ‘a’:3}}

demo

 {‘x’: {‘a’:3, 1:2.5}, 2: [‘a’,’b’,’c’], (2,4): 27}

demo[2]

 [‘a’, ‘b’, ‘c’]

demo[(2,4)]

 27

demo [‘x’]

 {‘a’:3, 1: 2.5}

demo[‘x’][1]

 2.5

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

again, common operators

Like others, dictionaries respond to these
• len(my_dict)

– number of key:value pairs in the dictionary
• element in my_dict

– boolean, is element a key in the dictionary
• for key in my_dict:

– iterates through the keys of a dictionary

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

fewer methods
Only 9 methods in total. Here are some
•key in my_dict

does the key exist in the dictionary
•my_dict.clear() – empty the dictionary
•my_dict.update(yourDict) – for each key in
yourDict, updates my_dict with that key/value
pair
•my_dict.copy - shallow copy
•my_dict.pop(key)– remove key, return value

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Dictionary content methods
• my_dict.items() – all the key/value pairs
• my_dict.keys() – all the keys
• my_dict.values() – all the values

There return what is called a dictionary view.
• the order of the views correspond
• are dynamically updated with changes
• are iterable

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Views are iterable
for key in my_dict:
 print(key)

– prints all the keys
for key,value in my_dict.items():
 print (key,value)

– prints all the key/value pairs
for value in my_dict.values():
 print (value)

– prints all the values

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

my_dict = {'a':2, 3:['x', 'y'], 'joe':'smith’}

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Frequency of words in list
3 ways

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

membership test

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

exceptions

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

get method

get method returns the value associated
with a dict key or a default value provided as
second argument. Below, the default is 0

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Sets

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Sets, as in Mathematical Sets
• in mathematics, a set is a collection of

objects, potentially of many different types
• in a set, no two elements are identical.

That is, a set consists of elements each of
which is unique compared to the other
elements

• there is no order to the elements of a set
• a set with no elements is the empty set

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Creating a set
Set can be created in one of two ways:
•constructor: set(iterable) where
the argument is iterable

my_set = set('abc')
my_set  {'a', 'b', 'c'}

•shortcut: {}, braces where the
elements have no colons (to distinguish
them from dicts)

my_set = {'a', 'b','c'}

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Diverse elements

• A set can consist of a mixture of different
types of elements

my_set = {'a',1,3.14159,True}
• as long as the single argument can be

iterated through, you can make a set of it

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

no duplicates
• duplicates are automatically removed

my_set = set("aabbccdd")
print(my_set)

 {'a', 'c', 'b', 'd'}

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

example

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

common operators

Most data structures respond to these:
• len(my_set)

– the number of elements in a set
• element in my_set

– boolean indicating whether element is in the
set

• for element in my_set:
– iterate through the elements in my_set

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Set operators
• The set data structure provides some

special operators that correspond to the
operators you learned in middle school.

• These are various combinations of set
contents

• These operations have both a method
name and a shortcut binary operator

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

method: intersection, op: &
a_set=set("abcd") b_set=set("cdef")

a_set & b_set  {'c', 'd'}
b_set.intersection(a_set)  {'c', 'd'}

 e fa b c dc d

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

method:difference op: -
a_set=set("abcd") b_set=set("cdef")

a_set – b_set  {'a', 'b'}
b_set.difference(a_set)  {'e', 'f'}

 e fa ba b c d

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

method: union, op: |
a_set=set("abcd") b_set=set("cdef")

a_set | b_set  {'a', 'b', 'c', 'd', 'e', 'f'}
b_set.union(a_set)  {'a', 'b', 'c', 'd', 'e',
'f'}

 a b c d e fa b c d e f

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

method:symmetric_difference,
op: ^

a_set=set("abcd"); b_set=set("cdef")

a_set ^ b_set  {'a', 'b', 'e', 'f'}
b_set.symmetric_difference(a_set)  {'a', 'b',
'e', 'f'}

 e fe fa ba b c d

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

method: issubset, op: <=
method: issuperset, op: >=

small_set=set("abc"); big_set=set("abcdef")

small_set <= big_set  True
big_set >= small_set  True

a b c d e f

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Other Set Ops
• my_set.add("g")

– adds to the set, no effect if item is in set already
• my_set.clear()

– empties the set
• my_set.remove("g") versus
my_set.discard("g")
– remove throws an error if "g" isn't there. discard doesn't

care. Both remove "g" from the set
• my_set.copy()

– returns a shallow copy of my_set

"The Practice of Computing Using Python",
Punch & Enbody, Copyright © 2013 Pearson Education, Inc.

Copy vs. assignment
my_set=set {'a', 'b', 'c'}
my_copy=my_set.copy()
my_ref_copy=my_set
my_set.remove('b')

my_set

myCopy

myRefCopy

set(['a','c'])

set(['a','b','c'])

	PowerPoint Presentation
	More Data Structures
	Dictionaries
	What is a dictionary?
	Key Value pairs
	Python Dictionary
	Slide 7
	keys and values
	collections but not a sequence
	Access dictionary elements
	Dictionaries are mutable
	Slide 12
	again, common operators
	fewer methods
	Dictionary content methods
	Views are iterable
	Slide 17
	Frequency of words in list 3 ways
	membership test
	exceptions
	get method
	Sets
	Sets, as in Mathematical Sets
	Creating a set
	Diverse elements
	no duplicates
	Slide 27
	common operators
	Set operators
	method: intersection, op: &
	method:difference op: -
	method: union, op: |
	method:symmetric_difference, op: ^
	method: issubset, op: <= method: issuperset, op: >=
	Other Set Ops
	Slide 36

