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Programming for Data 
Science: Conditional

Instructor: Jakramate Bootkrajang
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Outlines

● Conditional expression & Decision making
● One-way conditional 
● Two-way conditional
● Multi-way conditional
● Nested conditional
● Condition simplification
● Try-Except 
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Motivation

● Decision making occurs a lot in our everyday 
life

– What to eat ?
– Where to travel to ? 

● To decide, we do complicated information 
processing in our brain to come up with a 
decision
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Conditional expression

● Naturally, information we used is in the form 
of conditions (lots of conditions)

● Mathematically, conditions can be expressed 
as boolean expression (conditional 
expressions)

● Boolean expression is an expression which 
evaluated to True or False
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Conditional in Programming

● In programming, we also face with situation 
where we need to decide

– To print this message or not ?
– To continue or to quit ?
– To perform addition or subtraction ?
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The IF Statement

● In Python we can perform decision making 
and act accordingly using the IF statement

● Condition(s) is a boolean expression which 
when evaluated to True, the statement(s) will 
be executed

if condition(s): 
□□□□statement1
□□□□statement2
        ...
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The IF Statement [2]

● For example, we would have lunch at 
Biology’s cafeteria if it is not yet noon, we 
could have

● Note: Don’t forget the 4 spaces indentation!

if time < 12: 
    print(‘Let us go to Bio’)
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The IF Statement [3]

● The IF statement is one-way conditional
● Meaning that we will perform something if 

the conditions evaluated to True
● Otherwise, we do nothing
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Two-way conditional

● Real world is rather complicated and cruel, 
having only one-way conditional is quite a 
limitation

● We want to be able to

– Do something if condition is True
– Or else do some other thing
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Two-way conditional [2]

● To express the alternative (the case where 
condition is False), Python uses the else 
statement

if condition(s): 
□□□□do this if condition is True
else:
□□□□do this if condition is False
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Two-way conditional [3]

● The same lunch example

if time < 12: 
    print(‘Let us go to Bio’)
else:
    print(‘Let us go to OMC’)
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Multi-way conditional

● In fact, we can extend two-way conditional 
into multi-way conditional with the use of the 
elif statement

if condition1(s): 
□□□□do this if condition1 is True
elif condition2(s):
□□□□do this if condition2 is True
elif condition3(s):
□□□□do this if condition3 is True
else:
□□□□do this if nothing is True
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Multi-way conditional [2]

● The same lunch example

if time < 12: 
    print(‘Let us go to Bio’)
elif time < 14:
    print(‘Let us go to OMC’)
else:
    print(‘let us go to 7-11’)
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Nested conditions

● Sometimes our situation gets very 
complicated such that we may need to 
perform another decision inside some 
decision

● This kind of complex decision making results 
in the so-called nested condition
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Nested conditions [2]

● Our lunch problem

if time < 12: 
    print(‘Let us go to Bio’)
elif time < 14:
    print(‘Let us go to OMC’)
else:
    if noclass: 
        print(‘let us go to Maya’)
    else:
        print(‘let us go to 7-11’)
        

N
ested if
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Constructing conditions

● Conditions can be formed using basic 
comparison operators
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Constructing conditions [2]

● Single condition can be combined to form 
complex conditions using logical operators

– and, or, xor, not
● For examples

if time < 12 and time > 10: 
    Block of codes

            OR

if age < 60 or age > 18:
    Block of codes
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Nested conditions revisited

● Nested conditional is useful for representing 
complex condition

● But it is also quite confusing and often leads 
to unintended programming bugs

● It is recommended to avoid using nested 
conditional if we can simplify the condition

– e.g., using boolean algebra
– For example using De Morgan’s laws
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De Morgan’s Laws for 
simplifying conditions
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The Try-Except structure

● In reality, even if our codes perform correctly 
most of the time,

● There may be (rare) cases which can interupt 
the working of our codes

● This unforeseen error might due to users or 
external environments

● Careful analysis of the code might help 
catching these rare cases, but it takes time 
and is costly.
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Unforseen situation

● For example, we were writing a program that 
asks users for their ages and acts accordingly

● We have planned our test cases that catch 
negative number, zero, and all positive 
number.

● .. which should be enough
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Our program

● Displaying days old 

age = int(input(“How old are you?”))

if age <= 0: 
    print(“Are you kidding?”)
else:  
    print(“You are”, age*365, “days old”)
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What could go wrong ?

● What if user input “ten” instead of “10” ?
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Try-Except to the rescue

● In Python we can use try-except structure to 
catch unforeseen errors

● The syntax is  

try: 
    Block of codes 
    that may produce errors
except:
    Block of codes to be
    executed when error occurs



  25 / 25

Try-Except Example

● Except will catch error, and let the program 
continue without exiting. 

try:
    age = int(input(“How old are you?”))
    if age <= 0: 
        print(“Are you kidding?”)
    else:  
        print(“You are”, age*365, “days old”)
except:
    print(“Invalid input”)
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