
 1 / 25

Programming for Data
Science: Conditional

Instructor: Jakramate Bootkrajang

 2 / 25

Outlines

● Conditional expression & Decision making
● One-way conditional
● Two-way conditional
● Multi-way conditional
● Nested conditional
● Condition simplification
● Try-Except

 3 / 25

Motivation

● Decision making occurs a lot in our everyday
life

– What to eat ?
– Where to travel to ?

● To decide, we do complicated information
processing in our brain to come up with a
decision

 4 / 25

Conditional expression

● Naturally, information we used is in the form
of conditions (lots of conditions)

● Mathematically, conditions can be expressed
as boolean expression (conditional
expressions)

● Boolean expression is an expression which
evaluated to True or False

 5 / 25

Conditional in Programming

● In programming, we also face with situation
where we need to decide

– To print this message or not ?
– To continue or to quit ?
– To perform addition or subtraction ?

 6 / 25

The IF Statement

● In Python we can perform decision making
and act accordingly using the IF statement

● Condition(s) is a boolean expression which
when evaluated to True, the statement(s) will
be executed

if condition(s):
□□□□statement1
□□□□statement2
 ...

 7 / 25

The IF Statement [2]

● For example, we would have lunch at
Biology’s cafeteria if it is not yet noon, we
could have

● Note: Don’t forget the 4 spaces indentation!

if time < 12:
 print(‘Let us go to Bio’)

 8 / 25

The IF Statement [3]

● The IF statement is one-way conditional
● Meaning that we will perform something if

the conditions evaluated to True
● Otherwise, we do nothing

 9 / 25

Two-way conditional

● Real world is rather complicated and cruel,
having only one-way conditional is quite a
limitation

● We want to be able to

– Do something if condition is True
– Or else do some other thing

 10 / 25

Two-way conditional [2]

● To express the alternative (the case where
condition is False), Python uses the else
statement

if condition(s):
□□□□do this if condition is True
else:
□□□□do this if condition is False

 11 / 25

Two-way conditional [3]

● The same lunch example

if time < 12:
 print(‘Let us go to Bio’)
else:
 print(‘Let us go to OMC’)

 12 / 25

Multi-way conditional

● In fact, we can extend two-way conditional
into multi-way conditional with the use of the
elif statement

if condition1(s):
□□□□do this if condition1 is True
elif condition2(s):
□□□□do this if condition2 is True
elif condition3(s):
□□□□do this if condition3 is True
else:
□□□□do this if nothing is True

 13 / 25

Multi-way conditional [2]

● The same lunch example

if time < 12:
 print(‘Let us go to Bio’)
elif time < 14:
 print(‘Let us go to OMC’)
else:
 print(‘let us go to 7-11’)

 14 / 25

Nested conditions

● Sometimes our situation gets very
complicated such that we may need to
perform another decision inside some
decision

● This kind of complex decision making results
in the so-called nested condition

 15 / 25

Nested conditions [2]

● Our lunch problem

if time < 12:
 print(‘Let us go to Bio’)
elif time < 14:
 print(‘Let us go to OMC’)
else:
 if noclass:
 print(‘let us go to Maya’)
 else:
 print(‘let us go to 7-11’)

N
ested if

 16 / 25

Constructing conditions

● Conditions can be formed using basic
comparison operators

 17 / 25

Constructing conditions [2]

● Single condition can be combined to form
complex conditions using logical operators

– and, or, xor, not
● For examples

if time < 12 and time > 10:
 Block of codes

 OR

if age < 60 or age > 18:
 Block of codes

 18 / 25

Nested conditions revisited

● Nested conditional is useful for representing
complex condition

● But it is also quite confusing and often leads
to unintended programming bugs

● It is recommended to avoid using nested
conditional if we can simplify the condition

– e.g., using boolean algebra
– For example using De Morgan’s laws

 19 / 25

De Morgan’s Laws for
simplifying conditions

 20 / 25

The Try-Except structure

● In reality, even if our codes perform correctly
most of the time,

● There may be (rare) cases which can interupt
the working of our codes

● This unforeseen error might due to users or
external environments

● Careful analysis of the code might help
catching these rare cases, but it takes time
and is costly.

 21 / 25

Unforseen situation

● For example, we were writing a program that
asks users for their ages and acts accordingly

● We have planned our test cases that catch
negative number, zero, and all positive
number.

● .. which should be enough

 22 / 25

Our program

● Displaying days old

age = int(input(“How old are you?”))

if age <= 0:
 print(“Are you kidding?”)
else:
 print(“You are”, age*365, “days old”)

 23 / 25

What could go wrong ?

● What if user input “ten” instead of “10” ?

 24 / 25

Try-Except to the rescue

● In Python we can use try-except structure to
catch unforeseen errors

● The syntax is

try:
 Block of codes
 that may produce errors
except:
 Block of codes to be
 executed when error occurs

 25 / 25

Try-Except Example

● Except will catch error, and let the program
continue without exiting.

try:
 age = int(input(“How old are you?”))
 if age <= 0:
 print(“Are you kidding?”)
 else:
 print(“You are”, age*365, “days old”)
except:
 print(“Invalid input”)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

