Programming for Data
Science: Recursive
function

Instructor: Jakramate Bootkrajang

1/20

I Motivating example

 There are n people in a room. If each person
shakes hands once with every other person.
What is the total number h(n) of handshakes?

2/20

I Problem breakdown

* If you can calculate the number of time that
n-1 people shake hands, | can give you the
answer

« Which is h(n-1) + n-1
- In other word, h(n) = h(n-1) + n-1
* Now how to calculate h(n-1) ?

3/20

I It’s the same problem

* Well, okay if you can calculate the number of
times n-2 people shake hand, | can give you
the answer

* which is h(n-2) + n-2

4 /20

I And the list goes on

* h(n) = h(n-1) + n-1
* h(n-1) = h(n-2) + n-2

* h(4) = h(3) + 3
* h(3) = h(2) + 2
+ h(2) = h(1) + 1
* H(1) = 0

5/20

I In summary

 The number of handshakes is

* h(n)=h(1)+1+24+3+4+ ... +n-1
- The sum of integer from 1 to n-1
- Or equivalently n(n-1) / 2

6/20

I What did we just do ?

* We defined the problem in terms of the
problem itself

 We've been solving handshake problems but
with smaller and smaller size

* Until we find problem small enough to know
the answer instantly

 And we combine the result to subproblem for
the result to the original problem

71/20

I Recursion

* Divide and conquer approach for solving
seemingly complicated problem

» By defining problem in terms of the problem
itself but with smaller size

 Until we reach the case where the answer is
trivial

* The final result is the combination of answer
to the subproblems

8/20

I Factorial problem

 Whatis 6! ?
-bl=6**5*x4*x3*x2%]
 Or we could write

- 6! =6 * 5!
* In general we have
-nl=1 (Ifn==1)

-nl=n*(n-1)! (if nislarger than 1)

9/20

Recursive function for
factorial

o def factorial(n):
if n==1:
return 1
else:
return factorial(n-1)*n

factorial(4)

24

10/ 20

I The recusive function

o def factnrla-l_(/nl/-

if n==1
return 1
else:

return factorial(n-1)*n
factnriab{ﬁ?a \\
o = -

11/20

I Common mistakes

* |If there’'s no base case (non recursive branch)
the calculation will go on forever

- Make sure your solution has base case

- Make sure your code has non-recursive
branch

* The problem has to get smaller and smaller
everytime as we recursively call the function

- This will eventually lead to base case

12 /20

I Why use recursion ?

* Pros

- Elegent code
- Solve complex problem more easily
« Cons

- Recursive function consumes more time
and memory

13/20

I Example 1: Tower of Hanol

* Task: Move stack of discs to target peg

* Conditions
- Only one disc could be moved at a time

- A larger disc must never be stacked above
a smaller one

- One and only one extra peg could be used
for intermediate storage of discs

14 /20

Recursive

solution

~ ™ ™
L

Y

I Exercise 2: Range sum

* Given a range defined by two numbers find
the sum of all numbers in the range

03 def range_sum(lo, hi):

04 if (lo == hi):

05 return

06 else:

07 return

08

99 print range sum(1@, 15) # 75

16 /20

I Exercise 3: Power

* Find the power of base to the exponent exp

03
04
05
06
07
08

02 def power(base, exp):

assume exp 1S non-negative integer
if (exp == 0):

return
else:

return

@9 print power(2, 5) # 32

17/20

I Exercise 4: Sequence

¢ TP |
* WAWN k VDI Sequence a & Definition A9t

B 2, k=1
A = ﬂk_1+2k, k>1

& o . i o I ¢
* i awWona Recursive term_k (k) tNad1w AN a,

02 def term R(k):
03 if k == 1:
04 return
05 else

06 return

18 /20

I Exercise 5: Digit Sum

* Given an integer, find the summation of its

digits

08 def digit_sum(n):

09 if

19 return

11 else:

12 return

13

14 print(digit sum(1627)) # 10

19/20

Remember: The Three Laws
of Recursion

1)A recursive algorithm must have a base case.

2)A recursive algorithm must change its state
and move toward the base case.

3)A recursive algorithm must call itself,
recursively.

20/ 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

