
 1 / 20

Programming for Data
Science: Recursive
function

Instructor: Jakramate Bootkrajang

 2 / 20

Motivating example

● There are n people in a room. If each person
shakes hands once with every other person.
What is the total number h(n) of handshakes?

 3 / 20

Problem breakdown

● If you can calculate the number of time that
n-1 people shake hands, I can give you the
answer

● Which is h(n-1) + n-1

– In other word, h(n) = h(n-1) + n-1
● Now how to calculate h(n-1) ?

 4 / 20

It’s the same problem

● Well, okay if you can calculate the number of
times n-2 people shake hand, I can give you
the answer

● which is h(n-2) + n-2

 5 / 20

And the list goes on

● h(n) = h(n-1) + n-1
● h(n-1) = h(n-2) + n-2
● …
● h(4) = h(3) + 3
● h(3) = h(2) + 2
● h(2) = h(1) + 1
● H(1) = 0

 6 / 20

In summary

● The number of handshakes is
● h(n) = h(1) + 1 + 2 +3 + 4 + … + n-1

– The sum of integer from 1 to n-1
– Or equivalently n(n-1) / 2

 7 / 20

What did we just do ?

● We defined the problem in terms of the
problem itself

● We’ve been solving handshake problems but
with smaller and smaller size

● Until we find problem small enough to know
the answer instantly

● And we combine the result to subproblem for
the result to the original problem

 8 / 20

Recursion

● Divide and conquer approach for solving
seemingly complicated problem

● By defining problem in terms of the problem
itself but with smaller size

● Until we reach the case where the answer is
trivial

● The final result is the combination of answer
to the subproblems

 9 / 20

Factorial problem

● What is 6! ?

– 6! = 6 * 5 * 4 * 3 * 2 * 1
● Or we could write

– 6! = 6 * 5!
● In general we have

– n! = 1 (if n == 1)
– n! = n * (n-1)! (if n is larger than 1)

 10 / 20

Recursive function for
factorial

 11 / 20

The recusive function

Base case
(non recursive branch)

Problem gets smaller

Recursive case
(recursive branch)

 12 / 20

Common mistakes

● If there’s no base case (non recursive branch)
the calculation will go on forever

– Make sure your solution has base case
– Make sure your code has non-recursive

branch
● The problem has to get smaller and smaller

everytime as we recursively call the function

– This will eventually lead to base case

 13 / 20

Why use recursion ?

● Pros

– Elegent code
– Solve complex problem more easily

● Cons

– Recursive function consumes more time
and memory

 14 / 20

Example 1: Tower of Hanoi

● Task: Move stack of discs to target peg
● Conditions

– Only one disc could be moved at a time
– A larger disc must never be stacked above

a smaller one
– One and only one extra peg could be used

for intermediate storage of discs

 15 / 20

Recursive
solution

 16 / 20

Exercise 2: Range sum

● Given a range defined by two numbers find
the sum of all numbers in the range

 17 / 20

Exercise 3: Power

● Find the power of base to the exponent exp

 18 / 20

Exercise 4: Sequence

 19 / 20

Exercise 5: Digit Sum

● Given an integer, find the summation of its
digits

 20 / 20

Remember: The Three Laws
of Recursion

1)A recursive algorithm must have a base case.

2)A recursive algorithm must change its state
and move toward the base case.

3)A recursive algorithm must call itself,
recursively.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

