
 1 / 44

Programming for Data
Science: String and Lists

Instructor: Jakramate Bootkrajang

 2 / 44

Outlines

● String
● List
● Exercises

 3 / 44

String

● A sequence of characters
● Wrapped in single/double/triple quote

– ‘this is string’
– “this is also string”
– ‘’’so is this’’’

 4 / 44

Indexing

● Because the elements of a string are a
sequence, we can associate each element
with an index, a location in the sequence:

● positive values count up from the left,
beginning with index 0

● negative values count down from the right,
starting with -1

 5 / 44

Indexing Example

 6 / 44

Accessing an element

● A particular element of the string is accessed
by the index of the element surrounded by
square brackets []

● hello_str = 'Hello World'
● print(hello_str[1]) => prints e
● print(hello_str[-1]) => prints d
● print(hello_str[11]) => ERROR

 7 / 44

Slicing

● slicing is the ability to select a subsequence
of the overall sequence
– uses the syntax [start : finish], where:
– start is the index of where we start the

subsequence
– finish is the index of one after where we end

the subsequence

● if either start or finish are not provided, it
defaults to the beginning of the sequence for
start and the end of the sequence for
finish

 8 / 44

Slicing Example

 9 / 44

Slicing Example [2]

 10 / 44

Slicing example [3]

 11 / 44

Extended Slicing

● also takes three arguments:
[start:finish:countBy]

● defaults are:
start is beginning, finish is end, countBy
is 1

● my_str = 'hello world'
● my_str[0:11:2] 'hlowrd'

every other letter

 12 / 44

Extended slicing example

 13 / 44

Python string idioms

● idioms are python “phrases” that are used for
a common task that might be less obvious to
non-python folk

● how to make a copy of a string:
my_str = 'hi mom'
new_str = my_str[:]

● how to reverse a string
my_str = "madam I'm adam"
reverseStr = my_str[::-1]

 14 / 44

Strings are iterable

● The for loop iterates through each element of
a sequence in order. For a string, this means
character by character:

 15 / 44

Basic String Operations

● s = 'spam'
length operator len()

● len(s) 4
+ is concatenate

● new_str = 'spam' + '-' + 'spam-'
● print(new_str) spam-spam-

* is repeat, the number is how many times
● new_str * 3
'spam-spam-spam-spam-spam-spam-'

 16 / 44

String comparisons, single
char

● Python 3 uses the Unicode mapping for
characters.

● Allows for representing non-English
characters

● UTF-8, subset of Unicode, takes the English
letters, numbers and punctuation marks and
maps them to an integer.

● Single character comparisons are based on
that number

 17 / 44

Comparison example

● It makes sense to compare within a sequence
(lower case, upper case, digits).
'a' < 'b' True
'A' < 'B' True
'1' < '9' True

● Can be weird outside of the sequence
'a' < 'A' False
'a' < '0' False

 18 / 44

The whole string

● Compare the first element of each string
– if they are equal, move on to the next

character in each
– if they are not equal, the relationship

between those to characters are the
relationship between the string

– if one ends up being shorter (but equal),
the shorter is smaller

 19 / 44

Example

● 'a' < 'b' True
● 'aaab' < 'aaac'

first difference is at the last char. 'b'<'c' so
'aaab' is less than 'aaac'. True

● 'aa' < 'aaz'
The first string is the same but shorter. Thusit
is smaller. True

 20 / 44

Membership operations

● can check to see if a substring exists in the
string, the in operator. Returns True or False

● my_str = 'aabbccdd'
● 'a' in my_str True
● 'abb' in my_str True
● 'x' in my_str False

 21 / 44

Strings are immutable

● strings are immutable, that is you cannot
change one once you make it:
a_str = 'spam'
a_str[1] = 'l' ERROR

● However, you can use it to make another
string (copy it, slice it, etc.)
new_str = a_str[:1] + 'l' + a_str[2:]
a_str 'spam'
new_str 'slam'

 22 / 44

String methods

 23 / 44

List

● A list is an ordered sequence of items.
● Items need not be of the same types

– List of integer and character is possible
● Items are wrapped in square brackets [],

separated by commas

– A = [1,2,3,4,”five”]

 24 / 44

Constructing a list

● Using square brackets

– L = [‘a’,’b’,’c’]
● Using list(x) function

– X must be iterable: for example string
– list(“hello”)

● Result is [‘h’,’e’,’l’,’l’,’o’]

 25 / 44

List and String are similar

● Concatenate using +
● Repeat using *
● indexing (the [] operator)
● slicing ([:])
● membership (the in operator)
● len (the length operator)

 26 / 44

List operators

● [1, 2, 3] + [4] [1, 2, 3, 4]

● [1, 2, 3] * 2 [1, 2, 3, 1, 2, 3]

● 1 in [1, 2, 3] True

● [1, 2, 3] < [1, 2, 4] True
compare index to index, first difference
determines the result

 27 / 44

Difference between list and
string

● lists can contain a mixture of any python
object, strings can only hold characters
– 1,"bill",1.2345, True

● lists are mutable, their values can be
changed, while strings are immutable

 28 / 44

List indexing

 29 / 44

List of lists

● my_list = ['a', [1, 2, 3], 'z']
– What is the second element (index 1) of

that list? Another list.

● my_list[1][0] # apply left to right

● my_list[1] [1, 2, 3]

● [1, 2, 3][0] 1

 30 / 44

Function on list

● len(lst): number of elements in list (top
level). len([1, [1, 2], 3]) 3

● min(lst): smallest element. Must all be the
same type!

● max(lst): largest element, again all must be
the same type

● sum(lst): sum of the elements, numeric only

 31 / 44

Lists’ methods

● my_list.append(), my_list.extend()
● my_list.pop()
● my_list.insert(), my_list.remove()
● my_list.sort()
● my_list.reverse()

 32 / 44

In details

 33 / 44

In details [2]

 34 / 44

Iteration

● You can iterate through the elements of a list
like you did with a string:

 35 / 44

Lists are mutable

● Unlike strings, lists are mutable. You can
change the object's contents!

my_list = [1, 2, 3]
my_list[0] = 127
print(my_list) [127, 2, 3]

 36 / 44

Split

● The string method split() generates a
sequence of characters by splitting the string
at certain split-characters.

split_list = 'this is a test'.split()
split_list
 ['this', 'is', 'a', 'test']

 37 / 44

Join

● A string join() method takes list as input
argument and join each element in the list
with the string

split_list = ['this', 'is', 'a', 'test']
“+”.join(split_list)
 “this+is+a+test”

 38 / 44

Sorting

● Only lists have a built in sorting method. Thus
you often convert your data to a list if it
needs sorting
my_list = list('xyzabc')
my_list ['x','y','z','a','b','c']
my_list.sort() # no return
my_list
['a', 'b', 'c', 'x', 'y', 'z']

 39 / 44

Exercise 1: Anagram

● Anagrams are words that contain the same
letters arranged in a different order. For
example: 'iceman' and 'cinema'

● Write a program that asks user for two strings
and check if they are anagram

 40 / 44

Exercise 2: Sentiment
Analysis of reviews

● Suppose we want to automatically check if
user’s review is positive or negative

● Positive review usually contains these
positive keyword

– Great, good, nice, fun, enjoy
● Negative review contains

– Boring, bad, poor, worse, fail

 41 / 44

Exercise 2 (cont)

● Write a program that takes as input a (long)
string representing one review and check if
the review is positive or negative based on
the keywords given.

● For each positive keyword found the review
get +1 score (count the first time the
keyword is found only)

● For each negative keyword found the review
get -1 score

 42 / 44

Exercise 2 (cont)

● A review with more than +2 is considered
positive

● A review with less than -2 is considered
negative

● Else a review is considered neutral

 43 / 44

Data

● I just discovered this show a few days ago and totally binge-watched
every episode. It's sweet and concise, celebrating love for movies and
the creative process behind making them, from actors, directors,
producers, sfx artists, you name it. I think the hosts are terrific and the
joy they bring into each episode, whether they're on location
somewhere in Hollywood or interviewing guests, made me want to
keep watching. They are able to bring out a youthful and excited side
from each guest, and it's fun to see filmmakers talk about movies and
tv shows they love and then geek out playing movie games. Guests
not only talk about current work, but the hosts also talk with them
about past projects; for example, it was really cool when Tim
immediately out of the gate asked Alessandro Nivola about working on
Face/Off, and watching Kerri smoke a cigar with Norman Lear was
badass and had me cracking up. It's fun to watch an episode and then
turn around and watch trailers for movies they talked about that I
hadn't heard of before. Added to the watch list. Done. This show is a
great way to spend a lighthearted ten-fifteen minutes. I hope there are
many more seasons ahead.

 44 / 44

Data

● Twenty plus years after his boring character debut on
Mall Rats, the same turgid character continues to
linger on, pretending to be interesting, but failing
horribly. Unfortunately for the world, watching Kevin
Smith is like watching fungus grow on a rotten log.
Very boring and ponderous. Nothing that Smith says
is fun or exciting. It is just Kevin Smith being his
homie character from the 1990s. Same backwards
cap, same goofy grin, same empty observations. A
big waste of time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

