# Programming for Data Science: Nested loop lab 

Instructor: Jakramate Bootkrajang

## Exercise 1

- Write a function that takes an integer $\boldsymbol{n}$ as input, and print the following pattern upto $\boldsymbol{n}$ lines



## Exercise 2

- Write another function that takes as input an integer $\boldsymbol{n}$ and do the opposite of the previous function, that is



## Exercise 3: Tic-Tac-Toe

- We will try to implement the famous game of Tic-Tac-Toe



## Specs

- A turn-based game with 2 players
- The program will ask each player in turn where to make a move
- After receiving input from each player, the program update the board and print the current game state


## Game design questions

- How do we represent the board ?
- How do we refer to each square on the board ?
- $1,2,3,4 \ldots 9$ or $(1,1),(1,2),(1,3),(2,1),(2,2) \ldots$
- How do we represent a move by a player ?
- 'X' or 'O' or what?


## The board

- We could use list to represent board's state
- List in Python is a collection of objects
- List can be constructed using square brackets
- $A=[1,2,3,4,5]$ or
- B = ["a", "b", "c", "d"]
- List is string's cousin
- Element can be accessed by A[index]
- Eg., $A[0]$ is 1, $B[3]$ is " $d$ "
- List is mutable
- $\mathrm{B}[3]=$ "z" $\rightarrow$ B is now ["a","b","c","z"] 7/12


## Our board

- We will use list to store board's state
- board $=[0,0,0,0,0,0,0,0,0]$
- Zero represents empty cell
- 'X' may represent one player and '0' the other


## Exercise 3.1

- Define a board and
- Write a function named print_board() to print current board's state
- Example

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

## Exercise 3.2

- Write a function which takes as input a character representing player and an integer representing a cell, and simulate a move
- We may consider indexing a cell by number 1 to 9

$$
\begin{aligned}
& 123 \\
& 456 \\
& 789
\end{aligned}
$$

- Your function should modify board's state


## Exercise 3.2 (cont)

- Suppose your board is
- board $=[0,0,0,0,0,0,0,0,0]$
- move('x', 3)
- The board will be
- board $=\left[0,0, x^{\prime}, 0,0,0,0,0,0\right]$


## Exercise 3.3

- Write the game's main loop which
- Print current board's state
- Ask for a move from player 1
- Print current board's state
- Ask for a move from player 2
- And so on...
- How many times the main loop repeats ?

