

D ata Science from Scratch
Joel G rus

D ata Science from Scratch

by Joel G rus

C opyright ̈ 2015 O ‒R eilly M edia. A ll rights reserved.

Printed in the U nited States of A m erica.

Published by O ‒R eilly M edia, Inc., 1005 G ravenstein H ighw ay N orth, Sebastopol, C A
95472.

O ‒R eilly books m ay be purchased for educational, business, or sales prom otional use.
O nline editions are also available for m ost titles (http://safaribooksonline.com). For m ore
inform ation, contact our corporate/institutional sales departm ent: 800-998-9938 or
corporate@ oreilly.com .

Editor: M arie B eaugureau

Production Editor: M elanie Yarbrough

C opyeditor: N an R einhardt

Proofreader: Eileen C ohen

Indexer: Ellen Troutm an-Zaig

Interior D esigner: D avid Futato

C over D esigner: K aren M ontgom ery

Illustrator: R ebecca D em arest

A pril 2015: First Edition

R evision H istory for the First E dition
2015-04-10: First R elease

See http://oreilly.com /catalog/errata.csp?isbn=9781491901427 for release details.

The O ‒R eilly logo is a registered tradem ark of O ‒R eilly M edia, Inc. D ata Science from
Scratch, the cover im age of a R ock Ptarm igan, and related trade dress are tradem arks of
O ‒R eilly M edia, Inc.

W hile the publisher and the author have used good faith efforts to ensure that the
inform ation and instructions contained in this w ork are accurate, the publisher and the
author disclaim all responsibility for errors or om issions, including w ithout lim itation
responsibility for dam ages resulting from the use of or reliance on this w ork. U se of the
inform ation and instructions contained in this w ork is at your ow n risk. If any code
sam ples or other technology this w ork contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof com plies w ith such licenses and/or rights.

978-1-491-90142-7

[LSI]

Preface

D ata Science
D ata scientist has been called ―the sexiest job of the 21st century,‖ presum ably by
som eone w ho has never visited a fire station. N onetheless, data science is a hot and
grow ing field, and it doesn‒t take a great deal of sleuthing to find analysts breathlessly
prognosticating that over the next 10 years, w e‒ll need billions and billions m ore data
scientists than w e currently have.

B ut w hat is data science? A fter all, w e can‒t produce data scientists if w e don‒t know w hat
data science is. A ccording to a Venn diagram that is som ew hat fam ous in the industry, data
science lies at the intersection of:

H acking skills

M ath and statistics know ledge

Substantive expertise

A lthough I originally intended to w rite a book covering all three, I quickly realized that a
thorough treatm ent of ―substantive expertise‖ w ould require tens of thousands of pages. A t
that point, I decided to focus on the first tw o. M y goal is to help you develop the hacking
skills that you‒ll need to get started doing data science. A nd m y goal is to help you get
com fortable w ith the m athem atics and statistics that are at the core of data science.

This is a som ew hat heavy aspiration for a book. The best w ay to learn hacking skills is by
hacking on things. B y reading this book, you w ill get a good understanding of the w ay I
hack on things, w hich m ay not necessarily be the best w ay for you to hack on things. You
w ill get a good understanding of som e of the tools I use, w hich w ill not necessarily be the
best tools for you to use. You w ill get a good understanding of the w ay I approach data
problem s, w hich m ay not necessarily be the best w ay for you to approach data problem s.
The intent (and the hope) is that m y exam ples w ill inspire you try things your ow n w ay.
A ll the code and data from the book is available on G itH ub to get you started.

Sim ilarly, the best w ay to learn m athem atics is by doing m athem atics. This is em phatically
not a m ath book, and for the m ost part, w e w on‒t be ―doing m athem atics.‖ H ow ever, you
can‒t really do data science w ithout som e understanding of probability and statistics and
linear algebra. This m eans that, w here appropriate, w e w ill dive into m athem atical
equations, m athem atical intuition, m athem atical axiom s, and cartoon versions of big
m athem atical ideas. I hope that you w on‒t be afraid to dive in w ith m e.

Throughout it all, I also hope to give you a sense that playing w ith data is fun, because,
w ell, playing w ith data is fun! (Especially com pared to som e of the alternatives, like tax
preparation or coal m ining.)

From Scratch
There are lots and lots of data science libraries, fram ew orks, m odules, and toolkits that
efficiently im plem ent the m ost com m on (as w ell as the least com m on) data science
algorithm s and techniques. If you becom e a data scientist, you w ill becom e intim ately
fam iliar w ith N um Py, w ith scikit-learn, w ith pandas, and w ith a panoply of other libraries.
They are great for doing data science. B ut they are also a good w ay to start doing data
science w ithout actually understanding data science.

In this book, w e w ill be approaching data science from scratch. That m eans w e‒ll be
building tools and im plem enting algorithm s by hand in order to better understand them . I
put a lot of thought into creating im plem entations and exam ples that are clear, w ell-
com m ented, and readable. In m ost cases, the tools w e build w ill be illum inating but
im practical. They w ill w ork w ell on sm all toy data sets but fall over on ―w eb scale‖ ones.

Throughout the book, I w ill point you to libraries you m ight use to apply these techniques
to larger data sets. B ut w e w on‒t be using them here.

There is a healthy debate raging over the best language for learning data science. M any
people believe it‒s the statistical program m ing language R . (W e call those people w rong.)
A few people suggest Java or Scala. H ow ever, in m y opinion, Python is the obvious
choice.

Python has several features that m ake it w ell suited for learning (and doing) data science:

It‒s free.

It‒s relatively sim ple to code in (and, in particular, to understand).

It has lots of useful data sciencerelated libraries.

I am hesitant to call Python m y favorite program m ing language. There are other languages
I find m ore pleasant, better-designed, or just m ore fun to code in. A nd yet pretty m uch
every tim e I start a new data science project, I end up using Python. Every tim e I need to
quickly prototype som ething that just w orks, I end up using Python. A nd every tim e I
w ant to dem onstrate data science concepts in a clear, easy-to-understand w ay, I end up
using Python. A ccordingly, this book uses Python.

The goal of this book is not to teach you Python. (A lthough it is nearly certain that by
reading this book you w ill learn som e Python.) I‒ll take you through a chapter-long crash
course that highlights the features that are m ost im portant for our purposes, but if you
know nothing about program m ing in Python (or about program m ing at all) then you m ight
w ant to supplem ent this book w ith som e sort of ―Python for B eginners‖ tutorial.

The rem ainder of our introduction to data science w ill take this sam e approach   going
into detail w here going into detail seem s crucial or illum inating, at other tim es leaving
details for you to figure out yourself (or look up on W ikipedia).

O ver the years, I‒ve trained a num ber of data scientists. W hile not all of them have gone
on to becom e w orld-changing data ninja rockstars, I‒ve left them all better data scientists
than I found them . A nd I‒ve grow n to believe that anyone w ho has som e am ount of
m athem atical aptitude and som e am ount of program m ing skill has the necessary raw
m aterials to do data science. A ll she needs is an inquisitive m ind, a w illingness to w ork
hard, and this book. H ence this book.

C onventions U sed in T his B ook
The follow ing typographical conventions are used in this book:

Italic

Indicates new term s, U R Ls, em ail addresses, filenam es, and file extensions.
Constant width

U sed for program listings, as w ell as w ithin paragraphs to refer to program elem ents
such as variable or function nam es, databases, data types, environm ent variables,
statem ents, and keyw ords.

Constant width bold

Show s com m ands or other text that should be typed literally by the user.
Constant width italic

Show s text that should be replaced w ith user-supplied values or by values determ ined
by context.

T IP
This elem ent signifies a tip or suggestion.

N O T E
This elem ent signifies a general note.

W A R N IN G
This elem ent indicates a w arning or caution.

U sing C ode E xam ples
Supplem ental m aterial (code exam ples, exercises, etc.) is available for dow nload at
https://github.com /joelgrus/data-science-from -scratch.

This book is here to help you get your job done. In general, if exam ple code is offered
w ith this book, you m ay use it in your program s and docum entation. You do not need to
contact us for perm ission unless you‒re reproducing a significant portion of the code. For
exam ple, w riting a program that uses several chunks of code from this book does not
require perm ission. Selling or distributing a C D -R O M of exam ples from O ‒R eilly books
does require perm ission. A nsw ering a question by citing this book and quoting exam ple
code does not require perm ission. Incorporating a significant am ount of exam ple code
from this book into your product‒s docum entation does require perm ission.

W e appreciate, but do not require, attribution. A n attribution usually includes the title,
author, publisher, and ISB N . For exam ple: ―D ata Science from Scratch by Joel G rus
(O ‒R eilly). C opyright 2015 Joel G rus, 978-1-4919-0142-7.‖

If you feel your use of code exam ples falls outside fair use or the perm ission given above,
feel free to contact us at perm issions@ oreilly.com .

Safari¬ B ooks O nline
N O T E

Safari Books O nline is an on-dem and digital library that delivers expert content in both
book and video form from the w orld‒s leading authors in technology and business.

Technology professionals, softw are developers, w eb designers, and business and creative
professionals use Safari B ooks O nline as their prim ary resource for research, problem
solving, learning, and certification training.

Safari B ooks O nline offers a range of plans and pricing for enterprise, governm ent,
education, and individuals.

M em bers have access to thousands of books, training videos, and prepublication
m anuscripts in one fully searchable database from publishers like O ‒R eilly M edia,
Prentice H all Professional, A ddison-W esley Professional, M icrosoft Press, Sam s, Q ue,
Peachpit Press, Focal Press, C isco Press, John W iley & Sons, Syngress, M organ
K aufm ann, IB M R edbooks, Packt, A dobe Press, FT Press, A press, M anning, N ew R iders,
M cG raw -H ill, Jones & B artlett, C ourse Technology, and hundreds m ore. For m ore
inform ation about Safari B ooks O nline, please visit us online.

H ow to C ontact U s
Please address com m ents and questions concerning this book to the publisher:

O ‒R eilly M edia, Inc.

1005 G ravenstein H ighw ay N orth

Sebastopol, C A 95472

800-998-9938 (in the U nited States or C anada)

707-829-0515 (international or local)

707-829-0104 (fax)

W e have a w eb page for this book, w here w e list errata, exam ples, and any additional
inform ation. You can access this page at http://bit.ly/data-science-from -scratch.

To com m ent or ask technical questions about this book, send em ail to
bookquestions@ oreilly.com .

For m ore inform ation about our books, courses, conferences, and new s, see our w ebsite at
http://w w w.oreilly.com .

Find us on Facebook: http://facebook.com /oreilly

Follow us on Tw itter: http://tw itter.com /oreillym edia

W atch us on YouTube: http://w w w.youtube.com /oreillym edia

A cknow ledgm ents
First, I w ould like to thank M ike Loukides for accepting m y proposal for this book (and
for insisting that I pare it dow n to a reasonable size). It w ould have been very easy for him
to say, ―W ho‒s this person w ho keeps em ailing m e sam ple chapters, and how do I get him
to go aw ay?‖ I‒m grateful he didn‒t. I‒d also like to thank m y editor, M arie B eaugureau,
for guiding m e through the publishing process and getting the book in a m uch better state
than I ever w ould have gotten it on m y ow n.

I couldn‒t have w ritten this book if I‒d never learned data science, and I probably w ouldn‒t
have learned data science if not for the influence of D ave H su, Igor Tatarinov, John
R auser, and the rest of the Farecast gang. (So long ago that it w asn‒t even called data
science at the tim e!) The good folks at C oursera deserve a lot of credit, too.

I am also grateful to m y beta readers and review ers. Jay Fundling found a ton of m istakes
and pointed out m any unclear explanations, and the book is m uch better (and m uch m ore
correct) thanks to him . D ebashis G hosh is a hero for sanity-checking all of m y statistics.
A ndrew M usselm an suggested toning dow n the ―people w ho prefer R to Python are m oral
reprobates‖ aspect of the book, w hich I think ended up being pretty good advice. Trey
C ausey, Ryan M atthew B alfanz, Loris M ularoni, N øria Pujol, R ob Jefferson, M ary Pat
C am pbell, Zach G eary, and W endy G rus also provided invaluable feedback. A ny errors
rem aining are of course m y responsibility.

I ow e a lot to the Tw itter #datascience com m m unity, for exposing m e to a ton of new
concepts, introducing m e to a lot of great people, and m aking m e feel like enough of an
underachiever that I w ent out and w rote a book to com pensate. Special thanks to Trey
C ausey (again), for (inadvertently) rem inding m e to include a chapter on linear algebra,
and to Sean J. Taylor, for (inadvertently) pointing out a couple of huge gaps in the
―W orking w ith D ata‖ chapter.

A bove all, I ow e im m ense thanks to G anga and M adeline. The only thing harder than
w riting a book is living w ith som eone w ho‒s w riting a book, and I couldn‒t have pulled it
off w ithout their support.

C hapter 1. Introduction

―D ata! D ata! D ata!‖ he cried im patiently. ―I can‒t m ake bricks w ithout clay.‖

A rthur C onan D oyle

T he A scendance of D ata
W e live in a w orld that‒s drow ning in data. W ebsites track every user‒s every click. Your
sm artphone is building up a record of your location and speed every second of every day.
―Q uantified selfers‖ w ear pedom eters-on-steroids that are ever recording their heart rates,
m ovem ent habits, diet, and sleep patterns. Sm art cars collect driving habits, sm art hom es
collect living habits, and sm art m arketers collect purchasing habits. The Internet itself
represents a huge graph of know ledge that contains (am ong other things) an enorm ous
cross-referenced encyclopedia; dom ain-specific databases about m ovies, m usic, sports
results, pinball m achines, m em es, and cocktails; and too m any governm ent statistics
(som e of them nearly true!) from too m any governm ents to w rap your head around.

B uried in these data are answ ers to countless questions that no one‒s ever thought to ask.
In this book, w e‒ll learn how to find them .

W hat Is D ata Science?
There‒s a joke that says a data scientist is som eone w ho know s m ore statistics than a
com puter scientist and m ore com puter science than a statistician. (I didn‒t say it w as a
good joke.) In fact, som e data scientists are for all practical purposes statisticians,
w hile others are pretty m uch indistinguishable from softw are engineers. Som e are
m achine-learning experts, w hile others couldn‒t m achine-learn their w ay out of
kindergarten. Som e are PhD s w ith im pressive publication records, w hile others have never
read an academ ic paper (sham e on them , though). In short, pretty m uch no m atter how you
define data science, you‒ll find practitioners for w hom the definition is totally, absolutely
w rong.

N onetheless, w e w on‒t let that stop us from trying. W e‒ll say that a data scientist is
som eone w ho extracts insights from m essy data. Today‒s w orld is full of people trying to
turn data into insight.

For instance, the dating site O kC upid asks its m em bers to answ er thousands of questions
in order to find the m ost appropriate m atches for them . B ut it also analyzes these results to
figure out innocuous-sounding questions you can ask som eone to find out how likely
som eone is to sleep w ith you on the first date.

Facebook asks you to list your hom etow n and your current location, ostensibly to m ake it
easier for your friends to find and connect w ith you. B ut it also analyzes these locations to
identify global m igration patterns and w here the fanbases of different football team s live.

A s a large retailer, Target tracks your purchases and interactions, both online and in-store.
A nd it uses the data to predictively m odel w hich of its custom ers are pregnant, to better
m arket baby-related purchases to them .

In 2012, the O bam a cam paign em ployed dozens of data scientists w ho data-m ined and
experim ented their w ay to identifying voters w ho needed extra attention, choosing optim al
donor-specific fundraising appeals and program s, and focusing get-out-the-vote efforts
w here they w ere m ost likely to be useful. It is generally agreed that these efforts played an
im portant role in the president‒s re-election, w hich m eans it is a safe bet that political
cam paigns of the future w ill becom e m ore and m ore data-driven, resulting in a never-
ending arm s race of data science and data collection.

N ow , before you start feeling too jaded: som e data scientists also occasionally use their
skills for good using data to m ake governm ent m ore effective, to help the hom eless,
and to im prove public health. B ut it certainly w on‒t hurt your career if you like figuring
out the best w ay to get people to click on advertisem ents.

M otivating H ypothetical: D ataSciencester
C ongratulations! You‒ve just been hired to lead the data science efforts at D ataSciencester,
the social netw ork for data scientists.

D espite being for data scientists, D ataSciencester has never actually invested in building
its ow n data science practice. (In fairness, D ataSciencester has never really invested in
building its product either.) That w ill be your job! Throughout the book, w e‒ll be learning
about data science concepts by solving problem s that you encounter at w ork. Som etim es
w e‒ll look at data explicitly supplied by users, som etim es w e‒ll look at data generated
through their interactions w ith the site, and som etim es w e‒ll even look at data from
experim ents that w e‒ll design.

A nd because D ataSciencester has a strong ―not-invented-here‖ m entality, w e‒ll be
building our ow n tools from scratch. A t the end, you‒ll have a pretty solid understanding
of the fundam entals of data science. A nd you‒ll be ready to apply your skills at a com pany
w ith a less shaky prem ise, or to any other problem s that happen to interest you.

W elcom e aboard, and good luck! (You‒re allow ed to w ear jeans on Fridays, and the
bathroom is dow n the hall on the right.)

Finding K ey C onnectors
It‒s your first day on the job at D ataSciencester, and the V P of N etw orking is full of
questions about your users. U ntil now he‒s had no one to ask, so he‒s very excited to have
you aboard.

In particular, he w ants you to identify w ho the ―key connectors‖ are am ong data scientists.
To this end, he gives you a dum p of the entire D ataSciencester netw ork. (In real life,
people don‒t typically hand you the data you need. C hapter 9 is devoted to getting data.)

W hat does this data dum p look like? It consists of a list of users, each represented by a
dict that contains for each user his or her id (w hich is a num ber) and name (w hich, in one
of the great cosm ic coincidences, rhym es w ith the user‒s id):

users = [

 { "id": 0, "name": "Hero" },

 { "id": 1, "name": "Dunn" },

 { "id": 2, "name": "Sue" },

 { "id": 3, "name": "Chi" },

 { "id": 4, "name": "Thor" },

 { "id": 5, "name": "Clive" },

 { "id": 6, "name": "Hicks" },

 { "id": 7, "name": "Devin" },

 { "id": 8, "name": "Kate" },

 { "id": 9, "name": "Klein" }

]

H e also gives you the ―friendship‖ data, represented as a list of pairs of ID s:

friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),

 (4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)]

For exam ple, the tuple (0, 1) indicates that the data scientist w ith id 0 (H ero) and the
data scientist w ith id 1 (D unn) are friends. The netw ork is illustrated in Figure 1-1.

Figure 1-1. The D ataSciencester netw ork

Since w e represented our users as dicts, it‒s easy to augm ent them w ith extra data.

N O T E
D on‒t get too hung up on the details of the code right now . In C hapter 2, w e‒ll take you through a crash
course in Python. For now just try to get the general flavor of w hat w e‒re doing.

For exam ple, w e m ight w ant to add a list of friends to each user. First w e set each user‒s
friends property to an em pty list:

for user in users:

 user["friends"] = []

A nd then w e populate the lists using the friendships data:

for i, j in friendships:

 # this works because users[i] is the user whose id is i

 users[i]["friends"].append(users[j]) # add i as a friend of j

 users[j]["friends"].append(users[i]) # add j as a friend of i

O nce each user dict contains a list of friends, w e can easily ask questions of our graph,
like ―w hat‒s the average num ber of connections?‖

First w e find the total num ber of connections, by sum m ing up the lengths of all the
friends lists:

def number_of_friends(user):

 """how many friends does _user_ have?"""

 return len(user["friends"]) # length of friend_ids list

total_connections = sum(number_of_friends(user)

 for user in users) # 24

A nd then w e just divide by the num ber of users:

from __future__ import division # integer division is lame

num_users = len(users) # length of the users list

avg_connections = total_connections / num_users # 2.4

It‒s also easy to find the m ost connected people they‒re the people w ho have the largest
num ber of friends.

Since there aren‒t very m any users, w e can sort them from ―m ost friends‖ to ―least
friends‖:

create a list (user_id, number_of_friends)

num_friends_by_id = [(user["id"], number_of_friends(user))

 for user in users]

sorted(num_friends_by_id, # get it sorted

 key=lambda (user_id, num_friends): num_friends, # by num_friends

 reverse=True) # largest to smallest

each pair is (user_id, num_friends)

[(1, 3), (2, 3), (3, 3), (5, 3), (8, 3),

(0, 2), (4, 2), (6, 2), (7, 2), (9, 1)]

O ne w ay to think of w hat w e‒ve done is as a w ay of identifying people w ho are som ehow
central to the netw ork. In fact, w hat w e‒ve just com puted is the netw ork m etric degree
centrality (Figure 1-2).

Figure 1-2. The D ataSciencester netw ork sized by degree

This has the virtue of being pretty easy to calculate, but it doesn‒t alw ays give the results
you‒d w ant or expect. For exam ple, in the D ataSciencester netw ork Thor (id 4) only has
tw o connections w hile D unn (id 1) has three. Yet looking at the netw ork it intuitively
seem s like Thor should be m ore central. In C hapter 21, w e‒ll investigate netw orks in m ore
detail, and w e‒ll look at m ore com plex notions of centrality that m ay or m ay not accord
better w ith our intuition.

D ata Scientists You M ay K now
W hile you‒re still filling out new -hire paperw ork, the V P of Fraternization com es by your
desk. She w ants to encourage m ore connections am ong your m em bers, and she asks you
to design a ―D ata Scientists You M ay K now ‖ suggester.

Your first instinct is to suggest that a user m ight know the friends of friends. These are
easy to com pute: for each of a user‒s friends, iterate over that person‒s friends, and collect
all the results:

def friends_of_friend_ids_bad(user):

 # "foaf" is short for "friend of a friend"

 return [foaf["id"]

 for friend in user["friends"] # for each of user's friends

 for foaf in friend["friends"]] # get each of _their_ friends

W hen w e call this on users[0] (H ero), it produces:

[0, 2, 3, 0, 1, 3]

It includes user 0 (tw ice), since H ero is indeed friends w ith both of his friends. It includes
users 1 and 2, although they are both friends w ith H ero already. A nd it includes user 3
tw ice, as C hi is reachable through tw o different friends:

print [friend["id"] for friend in users[0]["friends"]] # [1, 2]

print [friend["id"] for friend in users[1]["friends"]] # [0, 2, 3]

print [friend["id"] for friend in users[2]["friends"]] # [0, 1, 3]

K now ing that people are friends-of-friends in m ultiple w ays seem s like interesting
inform ation, so m aybe instead w e should produce a count of m utual friends. A nd w e
definitely should use a helper function to exclude people already know n to the user:

from collections import Counter # not loaded by default

def not_the_same(user, other_user):

 """two users are not the same if they have different ids"""

 return user["id"] != other_user["id"]

def not_friends(user, other_user):

 """other_user is not a friend if he's not in user["friends"];

 that is, if he's not_the_same as all the people in user["friends"]"""

 return all(not_the_same(friend, other_user)

 for friend in user["friends"])

def friends_of_friend_ids(user):

 return Counter(foaf["id"]

 for friend in user["friends"] # for each of my friends

 for foaf in friend["friends"] # count *their* friends

 if not_the_same(user, foaf) # who aren't me

 and not_friends(user, foaf)) # and aren't my friends

print friends_of_friend_ids(users[3]) # Counter({0: 2, 5: 1})

This correctly tells C hi (id 3) that she has tw o m utual friends w ith H ero (id 0) but only
one m utual friend w ith C live (id 5).

A s a data scientist, you know that you also m ight enjoy m eeting users w ith sim ilar

interests. (This is a good exam ple of the ―substantive expertise‖ aspect of data science.)
A fter asking around, you m anage to get your hands on this data, as a list of pairs
(user_id, interest):

interests = [

 (0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"),

 (0, "Spark"), (0, "Storm"), (0, "Cassandra"),

 (1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),

 (1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),

 (2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"),

 (3, "statistics"), (3, "regression"), (3, "probability"),

 (4, "machine learning"), (4, "regression"), (4, "decision trees"),

 (4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"),

 (5, "Haskell"), (5, "programming languages"), (6, "statistics"),

 (6, "probability"), (6, "mathematics"), (6, "theory"),

 (7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"),

 (7, "neural networks"), (8, "neural networks"), (8, "deep learning"),

 (8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),

 (9, "Java"), (9, "MapReduce"), (9, "Big Data")

]

For exam ple, Thor (id 4) has no friends in com m on w ith D evin (id 7), but they share an
interest in m achine learning.

It‒s easy to build a function that finds users w ith a certain interest:

def data_scientists_who_like(target_interest):

 return [user_id

 for user_id, user_interest in interests

 if user_interest == target_interest]

This w orks, but it has to exam ine the w hole list of interests for every search. If w e have a
lot of users and interests (or if w e just w ant to do a lot of searches), w e‒re probably better
off building an index from interests to users:

from collections import defaultdict

keys are interests, values are lists of user_ids with that interest

user_ids_by_interest = defaultdict(list)

for user_id, interest in interests:

 user_ids_by_interest[interest].append(user_id)

A nd another from users to interests:

keys are user_ids, values are lists of interests for that user_id

interests_by_user_id = defaultdict(list)

for user_id, interest in interests:

 interests_by_user_id[user_id].append(interest)

N ow it‒s easy to find w ho has the m ost interests in com m on w ith a given user:

Iterate over the user‒s interests.

For each interest, iterate over the other users w ith that interest.

K eep count of how m any tim es w e see each other user.

def most_common_interests_with(user):

 return Counter(interested_user_id

 for interest in interests_by_user_id[user["id"]]

 for interested_user_id in user_ids_by_interest[interest]

 if interested_user_id != user["id"])

W e could then use this to build a richer ―D ata Scientists You Should K now ‖ feature based
on a com bination of m utual friends and m utual interests. W e‒ll explore these kinds of
applications in C hapter 22.

Salaries and E xperience
R ight as you‒re about to head to lunch, the V P of Public R elations asks if you can provide
som e fun facts about how m uch data scientists earn. Salary data is of course sensitive, but
he m anages to provide you an anonym ous data set containing each user‒s salary (in
dollars) and tenure as a data scientist (in years):

salaries_and_tenures = [(83000, 8.7), (88000, 8.1),

 (48000, 0.7), (76000, 6),

 (69000, 6.5), (76000, 7.5),

 (60000, 2.5), (83000, 10),

 (48000, 1.9), (63000, 4.2)]

The natural first step is to plot the data (w hich w e‒ll see how to do in C hapter 3). You can
see the results in Figure 1-3.

Figure 1-3. Salary by years of experience

It seem s pretty clear that people w ith m ore experience tend to earn m ore. H ow can you
turn this into a fun fact? Your first idea is to look at the average salary for each tenure:

keys are years, values are lists of the salaries for each tenure

salary_by_tenure = defaultdict(list)

for salary, tenure in salaries_and_tenures:

 salary_by_tenure[tenure].append(salary)

keys are years, each value is average salary for that tenure

average_salary_by_tenure = {

 tenure : sum(salaries) / len(salaries)

 for tenure, salaries in salary_by_tenure.items()

}

This turns out to be not particularly useful, as none of the users have the sam e tenure,
w hich m eans w e‒re just reporting the individual users‒ salaries:

{0.7: 48000.0,

 1.9: 48000.0,

 2.5: 60000.0,

 4.2: 63000.0,

 6: 76000.0,

 6.5: 69000.0,

 7.5: 76000.0,

 8.1: 88000.0,

 8.7: 83000.0,

 10: 83000.0}

It m ight be m ore helpful to bucket the tenures:

def tenure_bucket(tenure):

 if tenure < 2:

 return "less than two"

 elif tenure < 5:

 return "between two and five"

 else:

 return "more than five"

Then group together the salaries corresponding to each bucket:

keys are tenure buckets, values are lists of salaries for that bucket

salary_by_tenure_bucket = defaultdict(list)

for salary, tenure in salaries_and_tenures:

 bucket = tenure_bucket(tenure)

 salary_by_tenure_bucket[bucket].append(salary)

A nd finally com pute the average salary for each group:

keys are tenure buckets, values are average salary for that bucket

average_salary_by_bucket = {

 tenure_bucket : sum(salaries) / len(salaries)

 for tenure_bucket, salaries in salary_by_tenure_bucket.iteritems()

}

w hich is m ore interesting:

{'between two and five': 61500.0,

 'less than two': 48000.0,

 'more than five': 79166.66666666667}

A nd you have your soundbite: ―D ata scientists w ith m ore than five years experience earn
65% m ore than data scientists w ith little or no experience!‖

B ut w e chose the buckets in a pretty arbitrary w ay. W hat w e‒d really like is to m ake som e
sort of statem ent about the salary effect on average of having an additional year of

experience. In addition to m aking for a snappier fun fact, this allow s us to m ake
predictions about salaries that w e don‒t know . W e‒ll explore this idea in C hapter 14.

Paid A ccounts
W hen you get back to your desk, the V P of R evenue is w aiting for you. She w ants to
better understand w hich users pay for accounts and w hich don‒t. (She know s their nam es,
but that‒s not particularly actionable inform ation.)

You notice that there seem s to be a correspondence betw een years of experience and paid
accounts:

0.7 paid

1.9 unpaid

2.5 paid

4.2 unpaid

6 unpaid

6.5 unpaid

7.5 unpaid

8.1 unpaid

8.7 paid

10 paid

U sers w ith very few and very m any years of experience tend to pay; users w ith average
am ounts of experience don‒t.

A ccordingly, if you w anted to create a m odel though this is definitely not enough data
to base a m odel on you m ight try to predict ―paid‖ for users w ith very few and very
m any years of experience, and ―unpaid‖ for users w ith m iddling am ounts of experience:

def predict_paid_or_unpaid(years_experience):

 if years_experience < 3.0:

 return "paid"

 elif years_experience < 8.5:

 return "unpaid"

 else:

 return "paid"

O f course, w e totally eyeballed the cutoffs.

W ith m ore data (and m ore m athem atics), w e could build a m odel predicting the likelihood
that a user w ould pay, based on his years of experience. W e‒ll investigate this sort of
problem in C hapter 16.

Topics of Interest
A s you‒re w rapping up your first day, the V P of C ontent Strategy asks you for data about
w hat topics users are m ost interested in, so that she can plan out her blog calendar
accordingly. You already have the raw data from the friend-suggester project:

interests = [

 (0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"),

 (0, "Spark"), (0, "Storm"), (0, "Cassandra"),

 (1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),

 (1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),

 (2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"),

 (3, "statistics"), (3, "regression"), (3, "probability"),

 (4, "machine learning"), (4, "regression"), (4, "decision trees"),

 (4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"),

 (5, "Haskell"), (5, "programming languages"), (6, "statistics"),

 (6, "probability"), (6, "mathematics"), (6, "theory"),

 (7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"),

 (7, "neural networks"), (8, "neural networks"), (8, "deep learning"),

 (8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),

 (9, "Java"), (9, "MapReduce"), (9, "Big Data")

]

O ne sim ple (if not particularly exciting) w ay to find the m ost popular interests is sim ply to
count the w ords:

1. Low ercase each interest (since different users m ay or m ay not capitalize their
interests).

2. Split it into w ords.

3. C ount the results.

In code:

words_and_counts = Counter(word

 for user, interest in interests

 for word in interest.lower().split())

This m akes it easy to list out the w ords that occur m ore than once:

for word, count in words_and_counts.most_common():

 if count > 1:

 print word, count

w hich gives the results you‒d expect (unless you expect ―scikit-learn‖ to get split into tw o
w ords, in w hich case it doesn‒t give the results you expect):

learning 3

java 3

python 3

big 3

data 3

hbase 2

regression 2

cassandra 2

statistics 2

probability 2

hadoop 2

networks 2

machine 2

neural 2

scikit-learn 2

r 2

W e‒ll look at m ore sophisticated w ays to extract topics from data in C hapter 20.

O nw ard
It‒s been a successful first day! Exhausted, you slip out of the building before anyone else
can ask you for anything else. G et a good night‒s rest, because tom orrow is new em ployee
orientation. (Yes, you w ent through a full day of w ork before new em ployee orientation.
Take it up w ith H R .)

C hapter 2. A C rash C ourse in Python

People are still crazy about Python after tw enty-five years, w hich I find hard to believe.

M ichael Palin

A ll new em ployees at D ataSciencester are required to go through new em ployee
orientation, the m ost interesting part of w hich is a crash course in Python.

This is not a com prehensive Python tutorial but instead is intended to highlight the parts of
the language that w ill be m ost im portant to us (som e of w hich are often not the focus of
Python tutorials).

T he B asics

G etting Python
You can dow nload Python from python.org. B ut if you don‒t already have Python, I
recom m end instead installing the A naconda distribution, w hich already includes m ost of
the libraries that you need to do data science.

A s I w rite this, the latest version of Python is 3.4. A t D ataSciencester, how ever, w e use
old, reliable Python 2.7. Python 3 is not backw ard-com patible w ith Python 2, and m any
im portant libraries only w ork w ell w ith 2.7. The data science com m unity is still firm ly
stuck on 2.7, w hich m eans w e w ill be, too. M ake sure to get that version.

If you don‒t get A naconda, m ake sure to install pip, w hich is a Python package m anager
that allow s you to easily install third-party packages (som e of w hich w e‒ll need). It‒s also
w orth getting IPython, w hich is a m uch nicer Python shell to w ork w ith.

(If you installed A naconda then it should have com e w ith pip and IPython.)

Just run:

pip install ipython

and then search the Internet for solutions to w hatever cryptic error m essages that causes.

T he Z en of Python
Python has a som ew hat Zen description of its design principles, w hich you can also find
inside the Python interpreter itself by typing import this.

O ne of the m ost discussed of these is:

There should be one and preferably only one obvious w ay to do it.

C ode w ritten in accordance w ith this ―obvious‖ w ay (w hich m ay not be obvious at all to a
new com er) is often described as ―Pythonic.‖ A lthough this is not a book about Python, w e
w ill occasionally contrast Pythonic and non-Pythonic w ays of accom plishing the sam e
things, and w e w ill generally favor Pythonic solutions to our problem s.

W hitespace Form atting
M any languages use curly braces to delim it blocks of code. Python uses indentation:

for i in [1, 2, 3, 4, 5]:

 print i # first line in "for i" block

 for j in [1, 2, 3, 4, 5]:

 print j # first line in "for j" block

 print i + j # last line in "for j" block

 print i # last line in "for i" block

print "done looping"

This m akes Python code very readable, but it also m eans that you have to be very careful
w ith your form atting. W hitespace is ignored inside parentheses and brackets, w hich can be
helpful for long-w inded com putations:

long_winded_computation = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 +

 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20)

and for m aking code easier to read:

list_of_lists = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

easier_to_read_list_of_lists = [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

You can also use a backslash to indicate that a statem ent continues onto the next line,
although w e‒ll rarely do this:

two_plus_three = 2 + \

 3

O ne consequence of w hitespace form atting is that it can be hard to copy and paste code
into the Python shell. For exam ple, if you tried to paste the code:

for i in [1, 2, 3, 4, 5]:

 # notice the blank line

 print i

into the ordinary Python shell, you w ould get a:

IndentationError: expected an indented block

because the interpreter thinks the blank line signals the end of the for loop‒s block.

IPython has a m agic function %paste, w hich correctly pastes w hatever is on your
clipboard, w hitespace and all. This alone is a good reason to use IPython.

M odules
C ertain features of Python are not loaded by default. These include both features included
as part of the language as w ell as third-party features that you dow nload yourself. In order
to use these features, you‒ll need to import the m odules that contain them .

O ne approach is to sim ply im port the m odule itself:

import re

my_regex = re.compile("[0-9]+", re.I)

H ere re is the m odule containing functions and constants for w orking w ith regular
expressions. A fter this type of import you can only access those functions by prefixing
them w ith re..

If you already had a different re in your code you could use an alias:

import re as regex

my_regex = regex.compile("[0-9]+", regex.I)

You m ight also do this if your m odule has an unw ieldy nam e or if you‒re going to be
typing it a lot. For exam ple, w hen visualizing data w ith matplotlib, a standard
convention is:

import matplotlib.pyplot as plt

If you need a few specific values from a m odule, you can im port them explicitly and use
them w ithout qualification:

from collections import defaultdict, Counter

lookup = defaultdict(int)

my_counter = Counter()

If you w ere a bad person, you could im port the entire contents of a m odule into your
nam espace, w hich m ight inadvertently overw rite variables you‒ve already defined:

match = 10

from re import * # uh oh, re has a match function

print match # "<function re.match>"

H ow ever, since you are not a bad person, you w on‒t ever do this.

A rithm etic
Python 2.7 uses integer division by default, so that 5 / 2 equals 2. A lm ost alw ays this is
not w hat w e w ant, so w e w ill alw ays start our files w ith:

from __future__ import division

after w hich 5 / 2 equals 2.5. Every code exam ple in this book uses this new -style
division. In the handful of cases w here w e need integer division, w e can get it w ith a
double slash: 5 // 2.

Functions
A function is a rule for taking zero or m ore inputs and returning a corresponding output. In
Python, w e typically define functions using def:

def double(x):

 """this is where you put an optional docstring

 that explains what the function does.

 for example, this function multiplies its input by 2"""

 return x * 2

Python functions are first-class, w hich m eans that w e can assign them to variables and
pass them into functions just like any other argum ents:

def apply_to_one(f):

 """calls the function f with 1 as its argument"""

 return f(1)

my_double = double # refers to the previously defined function

x = apply_to_one(my_double) # equals 2

It is also easy to create short anonym ous functions, or lam bdas:

y = apply_to_one(lambda x: x + 4) # equals 5

You can assign lam bdas to variables, although m ost people w ill tell you that you should
just use def instead:

another_double = lambda x: 2 * x # don't do this

def another_double(x): return 2 * x # do this instead

Function param eters can also be given default argum ents, w hich only need to be specified
w hen you w ant a value other than the default:

def my_print(message="my default message"):

 print message

my_print("hello") # prints 'hello'

my_print() # prints 'my default message'

It is som etim es useful to specify argum ents by nam e:

def subtract(a=0, b=0):

 return a - b

subtract(10, 5) # returns 5

subtract(0, 5) # returns -5

subtract(b=5) # same as previous

W e w ill be creating m any, m any functions.

Strings
Strings can be delim ited by single or double quotation m arks (but the quotes have to
m atch):

single_quoted_string = 'data science'

double_quoted_string = "data science"

Python uses backslashes to encode special characters. For exam ple:

tab_string = "\t" # represents the tab character

len(tab_string) # is 1

If you w ant backslashes as backslashes (w hich you m ight in W indow s directory nam es or
in regular expressions), you can create raw strings using r"":

not_tab_string = r"\t" # represents the characters '\' and 't'

len(not_tab_string) # is 2

You can create m ultiline strings using triple-[double-]-quotes:

multi_line_string = """This is the first line.

and this is the second line

and this is the third line"""

E xceptions
W hen som ething goes w rong, Python raises an exception. U nhandled, these w ill cause
your program to crash. You can handle them using try and except:

try:

 print 0 / 0

except ZeroDivisionError:

 print "cannot divide by zero"

A lthough in m any languages exceptions are considered bad, in Python there is no sham e
in using them to m ake your code cleaner, and w e w ill occasionally do so.

L ists
Probably the m ost fundam ental data structure in Python is the list. A list is sim ply an
ordered collection. (It is sim ilar to w hat in other languages m ight be called an array, but
w ith som e added functionality.)

integer_list = [1, 2, 3]

heterogeneous_list = ["string", 0.1, True]

list_of_lists = [integer_list, heterogeneous_list, []]

list_length = len(integer_list) # equals 3

list_sum = sum(integer_list) # equals 6

You can get or set the nth elem ent of a list w ith square brackets:

x = range(10) # is the list [0, 1, ..., 9]

zero = x[0] # equals 0, lists are 0-indexed

one = x[1] # equals 1

nine = x[-1] # equals 9, 'Pythonic' for last element

eight = x[-2] # equals 8, 'Pythonic' for next-to-last element

x[0] = -1 # now x is [-1, 1, 2, 3, ..., 9]

You can also use square brackets to ―slice‖ lists:

first_three = x[:3] # [-1, 1, 2]

three_to_end = x[3:] # [3, 4, ..., 9]

one_to_four = x[1:5] # [1, 2, 3, 4]

last_three = x[-3:] # [7, 8, 9]

without_first_and_last = x[1:-1] # [1, 2, ..., 8]

copy_of_x = x[:] # [-1, 1, 2, ..., 9]

Python has an in operator to check for list m em bership:

1 in [1, 2, 3] # True

0 in [1, 2, 3] # False

This check involves exam ining the elem ents of the list one at a tim e, w hich m eans that
you probably shouldn‒t use it unless you know your list is pretty sm all (or unless you
don‒t care how long the check takes).

It is easy to concatenate lists together:

x = [1, 2, 3]

x.extend([4, 5, 6]) # x is now [1,2,3,4,5,6]

If you don‒t w ant to m odify x you can use list addition:

x = [1, 2, 3]

y = x + [4, 5, 6] # y is [1, 2, 3, 4, 5, 6]; x is unchanged

M ore frequently w e w ill append to lists one item at a tim e:

x = [1, 2, 3]

x.append(0) # x is now [1, 2, 3, 0]

y = x[-1] # equals 0

z = len(x) # equals 4

It is often convenient to unpack lists if you know how m any elem ents they contain:

x, y = [1, 2] # now x is 1, y is 2

although you w ill get a ValueError if you don‒t have the sam e num bers of elem ents on
both sides.

It‒s com m on to use an underscore for a value you‒re going to throw aw ay:

_, y = [1, 2] # now y == 2, didn't care about the first element

Tuples
Tuples are lists‒ im m utable cousins. Pretty m uch anything you can do to a list that doesn‒t
involve m odifying it, you can do to a tuple. You specify a tuple by using parentheses (or
nothing) instead of square brackets:

my_list = [1, 2]

my_tuple = (1, 2)

other_tuple = 3, 4

my_list[1] = 3 # my_list is now [1, 3]

try:

 my_tuple[1] = 3

except TypeError:

 print "cannot modify a tuple"

Tuples are a convenient w ay to return m ultiple values from functions:

def sum_and_product(x, y):

 return (x + y),(x * y)

sp = sum_and_product(2, 3) # equals (5, 6)

s, p = sum_and_product(5, 10) # s is 15, p is 50

Tuples (and lists) can also be used for m ultiple assignm ent:

x, y = 1, 2 # now x is 1, y is 2

x, y = y, x # Pythonic way to swap variables; now x is 2, y is 1

D ictionaries
A nother fundam ental data structure is a dictionary, w hich associates values w ith keys and
allow s you to quickly retrieve the value corresponding to a given key:

empty_dict = {} # Pythonic

empty_dict2 = dict() # less Pythonic

grades = { "Joel" : 80, "Tim" : 95 } # dictionary literal

You can look up the value for a key using square brackets:

joels_grade = grades["Joel"] # equals 80

B ut you‒ll get a KeyError if you ask for a key that‒s not in the dictionary:

try:

 kates_grade = grades["Kate"]

except KeyError:

 print "no grade for Kate!"

You can check for the existence of a key using in:

joel_has_grade = "Joel" in grades # True

kate_has_grade = "Kate" in grades # False

D ictionaries have a get m ethod that returns a default value (instead of raising an
exception) w hen you look up a key that‒s not in the dictionary:

joels_grade = grades.get("Joel", 0) # equals 80

kates_grade = grades.get("Kate", 0) # equals 0

no_ones_grade = grades.get("No One") # default default is None

You assign key-value pairs using the sam e square brackets:

grades["Tim"] = 99 # replaces the old value

grades["Kate"] = 100 # adds a third entry

num_students = len(grades) # equals 3

W e w ill frequently use dictionaries as a sim ple w ay to represent structured data:

tweet = {

 "user" : "joelgrus",

 "text" : "Data Science is Awesome",

 "retweet_count" : 100,

 "hashtags" : ["#data", "#science", "#datascience", "#awesome", "#yolo"]

}

B esides looking for specific keys w e can look at all of them :

tweet_keys = tweet.keys() # list of keys

tweet_values = tweet.values() # list of values

tweet_items = tweet.items() # list of (key, value) tuples

"user" in tweet_keys # True, but uses a slow list in

"user" in tweet # more Pythonic, uses faster dict in

"joelgrus" in tweet_values # True

D ictionary keys m ust be im m utable; in particular, you cannot use lists as keys. If you
need a m ultipart key, you should use a tuple or figure out a w ay to turn the key into a
string.

defaultdict

Im agine that you‒re trying to count the w ords in a docum ent. A n obvious approach is to
create a dictionary in w hich the keys are w ords and the values are counts. A s you check
each w ord, you can increm ent its count if it‒s already in the dictionary and add it to the
dictionary if it‒s not:

word_counts = {}

for word in document:

 if word in word_counts:

 word_counts[word] += 1

 else:

 word_counts[word] = 1

You could also use the ―forgiveness is better than perm ission‖ approach and just handle
the exception from trying to look up a m issing key:

word_counts = {}

for word in document:

 try:

 word_counts[word] += 1

 except KeyError:

 word_counts[word] = 1

A third approach is to use get, w hich behaves gracefully for m issing keys:

word_counts = {}

for word in document:

 previous_count = word_counts.get(word, 0)

 word_counts[word] = previous_count + 1

Every one of these is slightly unw ieldy, w hich is w hy defaultdict is useful. A
defaultdict is like a regular dictionary, except that w hen you try to look up a key it
doesn‒t contain, it first adds a value for it using a zero-argum ent function you provided
w hen you created it. In order to use defaultdicts, you have to im port them from
collections:

from collections import defaultdict

word_counts = defaultdict(int) # int() produces 0

for word in document:

 word_counts[word] += 1

They can also be useful w ith list or dict or even your ow n functions:

dd_list = defaultdict(list) # list() produces an empty list

dd_list[2].append(1) # now dd_list contains {2: [1]}

dd_dict = defaultdict(dict) # dict() produces an empty dict

dd_dict["Joel"]["City"] = "Seattle" # { "Joel" : { "City" : Seattle"}}

dd_pair = defaultdict(lambda: [0, 0])

dd_pair[2][1] = 1 # now dd_pair contains {2: [0,1]}

These w ill be useful w hen w e‒re using dictionaries to ―collect‖ results by som e key and
don‒t w ant to have to check every tim e to see if the key exists yet.

C ounter

A Counter turns a sequence of values into a defaultdict(int)-like object m apping keys
to counts. W e w ill prim arily use it to create histogram s:

from collections import Counter

c = Counter([0, 1, 2, 0]) # c is (basically) { 0 : 2, 1 : 1, 2 : 1 }

This gives us a very sim ple w ay to solve our word_counts problem :

word_counts = Counter(document)

A Counter instance has a most_common m ethod that is frequently useful:

print the 10 most common words and their counts

for word, count in word_counts.most_common(10):

 print word, count

Sets
A nother data structure is set, w hich represents a collection of distinct elem ents:

s = set()

s.add(1) # s is now { 1 }

s.add(2) # s is now { 1, 2 }

s.add(2) # s is still { 1, 2 }

x = len(s) # equals 2

y = 2 in s # equals True

z = 3 in s # equals False

W e‒ll use sets for tw o m ain reasons. The first is that in is a very fast operation on sets. If
w e have a large collection of item s that w e w ant to use for a m em bership test, a set is m ore
appropriate than a list:

stopwords_list = ["a","an","at"] + hundreds_of_other_words + ["yet", "you"]

"zip" in stopwords_list # False, but have to check every element

stopwords_set = set(stopwords_list)

"zip" in stopwords_set # very fast to check

The second reason is to find the distinct item s in a collection:

item_list = [1, 2, 3, 1, 2, 3]

num_items = len(item_list) # 6

item_set = set(item_list) # {1, 2, 3}

num_distinct_items = len(item_set) # 3

distinct_item_list = list(item_set) # [1, 2, 3]

W e‒ll use sets m uch less frequently than dicts and lists.

C ontrol Flow
A s in m ost program m ing languages, you can perform an action conditionally using if:

if 1 > 2:

 message = "if only 1 were greater than two"

elif 1 > 3:

 message = "elif stands for 'else if'"

else:

 message = "when all else fails use else (if you want to)"

You can also w rite a ternary if-then-else on one line, w hich w e w ill do occasionally:

parity = "even" if x % 2 == 0 else "odd"

Python has a while loop:

x = 0

while x < 10:

 print x, "is less than 10"

 x += 1

although m ore often w e‒ll use for and in:

for x in range(10):

 print x, "is less than 10"

If you need m ore-com plex logic, you can use continue and break:

for x in range(10):

 if x == 3:

 continue # go immediately to the next iteration

 if x == 5:

 break # quit the loop entirely

 print x

This w ill print 0, 1, 2, and 4.

Truthiness
B ooleans in Python w ork as in m ost other languages, except that they‒re capitalized:

one_is_less_than_two = 1 < 2 # equals True

true_equals_false = True == False # equals False

Python uses the value None to indicate a nonexistent value. It is sim ilar to other languages‒
null:

x = None

print x == None # prints True, but is not Pythonic

print x is None # prints True, and is Pythonic

Python lets you use any value w here it expects a B oolean. The follow ing are all ―Falsy‖:

False

None

[] (an em pty list)

{} (an em pty dict)

""

set()

0

0.0

Pretty m uch anything else gets treated as True. This allow s you to easily use if statem ents
to test for em pty lists or em pty strings or em pty dictionaries or so on. It also som etim es
causes tricky bugs if you‒re not expecting this behavior:

s = some_function_that_returns_a_string()

if s:

 first_char = s[0]

else:

 first_char = ""

A sim pler w ay of doing the sam e is:

first_char = s and s[0]

since and returns its second value w hen the first is ―truthy,‖ the first value w hen it‒s not.
Sim ilarly, if x is either a num ber or possibly None:

safe_x = x or 0

is definitely a num ber.

Python has an all function, w hich takes a list and returns True precisely w hen every
elem ent is truthy, and an any function, w hich returns True w hen at least one elem ent is
truthy:

all([True, 1, { 3 }]) # True

all([True, 1, {}]) # False, {} is falsy

any([True, 1, {}]) # True, True is truthy

all([]) # True, no falsy elements in the list

any([]) # False, no truthy elements in the list

T he N ot-So-B asics
H ere w e‒ll look at som e m ore-advanced Python features that w e‒ll find useful for w orking
w ith data.

Sorting
Every Python list has a sort m ethod that sorts it in place. If you don‒t w ant to m ess up
your list, you can use the sorted function, w hich returns a new list:

x = [4,1,2,3]

y = sorted(x) # is [1,2,3,4], x is unchanged

x.sort() # now x is [1,2,3,4]

B y default, sort (and sorted) sort a list from sm allest to largest based on naively
com paring the elem ents to one another.

If you w ant elem ents sorted from largest to sm allest, you can specify a reverse=True
param eter. A nd instead of com paring the elem ents them selves, you can com pare the
results of a function that you specify w ith key:

sort the list by absolute value from largest to smallest

x = sorted([-4,1,-2,3], key=abs, reverse=True) # is [-4,3,-2,1]

sort the words and counts from highest count to lowest

wc = sorted(word_counts.items(),

 key=lambda (word, count): count,

 reverse=True)

L ist C om prehensions
Frequently, you‒ll w ant to transform a list into another list, by choosing only certain
elem ents, or by transform ing elem ents, or both. The Pythonic w ay of doing this is list
com prehensions:

even_numbers = [x for x in range(5) if x % 2 == 0] # [0, 2, 4]

squares = [x * x for x in range(5)] # [0, 1, 4, 9, 16]

even_squares = [x * x for x in even_numbers] # [0, 4, 16]

You can sim ilarly turn lists into dictionaries or sets:

square_dict = { x : x * x for x in range(5) } # { 0:0, 1:1, 2:4, 3:9, 4:16 }

square_set = { x * x for x in [1, -1] } # { 1 }

If you don‒t need the value from the list, it‒s conventional to use an underscore as the
variable:

zeroes = [0 for _ in even_numbers] # has the same length as even_numbers

A list com prehension can include m ultiple fors:

pairs = [(x, y)

 for x in range(10)

 for y in range(10)] # 100 pairs (0,0) (0,1) ... (9,8), (9,9)

and later fors can use the results of earlier ones:

increasing_pairs = [(x, y) # only pairs with x < y,

 for x in range(10) # range(lo, hi) equals

 for y in range(x + 1, 10)] # [lo, lo + 1, ..., hi - 1]

W e w ill use list com prehensions a lot.

G enerators and Iterators
A problem w ith lists is that they can easily grow very big. range(1000000) creates an
actual list of 1 m illion elem ents. If you only need to deal w ith them one at a tim e, this can
be a huge source of inefficiency (or of running out of m em ory). If you potentially only
need the first few values, then calculating them all is a w aste.

A generator is som ething that you can iterate over (for us, usually using for) but w hose
values are produced only as needed (lazily).

O ne w ay to create generators is w ith functions and the yield operator:

def lazy_range(n):

 """a lazy version of range"""

 i = 0

 while i < n:

 yield i

 i += 1

The follow ing loop w ill consum e the yielded values one at a tim e until none are left:

for i in lazy_range(10):

 do_something_with(i)

(Python actually com es w ith a lazy_range function called xrange, and in Python 3, range
itself is lazy.) This m eans you could even create an infinite sequence:

def natural_numbers():

 """returns 1, 2, 3, ..."""

 n = 1

 while True:

 yield n

 n += 1

although you probably shouldn‒t iterate over it w ithout using som e kind of break logic.

T IP
The flip side of laziness is that you can only iterate through a generator once. If you need to iterate through
som ething m ultiple tim es, you‒ll need to either recreate the generator each tim e or use a list.

A second w ay to create generators is by using for com prehensions w rapped in
parentheses:

lazy_evens_below_20 = (i for i in lazy_range(20) if i % 2 == 0)

R ecall also that every dict has an items() m ethod that returns a list of its key-value pairs.
M ore frequently w e‒ll use the iteritems() m ethod, w hich lazily yields the key-value
pairs one at a tim e as w e iterate over it.

R andom ness
A s w e learn data science, w e w ill frequently need to generate random num bers, w hich w e
can do w ith the random m odule:

import random

four_uniform_randoms = [random.random() for _ in range(4)]

[0.8444218515250481, # random.random() produces numbers

0.7579544029403025, # uniformly between 0 and 1

0.420571580830845, # it's the random function we'll use

0.25891675029296335] # most often

The random m odule actually produces pseudorandom (that is, determ inistic) num bers
based on an internal state that you can set w ith random.seed if you w ant to get
reproducible results:

random.seed(10) # set the seed to 10

print random.random() # 0.57140259469

random.seed(10) # reset the seed to 10

print random.random() # 0.57140259469 again

W e‒ll som etim es use random.randrange, w hich takes either 1 or 2 argum ents and returns
an elem ent chosen random ly from the corresponding range():

random.randrange(10) # choose randomly from range(10) = [0, 1, ..., 9]

random.randrange(3, 6) # choose randomly from range(3, 6) = [3, 4, 5]

There are a few m ore m ethods that w e‒ll som etim es find convenient. random.shuffle
random ly reorders the elem ents of a list:

up_to_ten = range(10)

random.shuffle(up_to_ten)

print up_to_ten

[2, 5, 1, 9, 7, 3, 8, 6, 4, 0] (your results will probably be different)

If you need to random ly pick one elem ent from a list you can use random.choice:

my_best_friend = random.choice(["Alice", "Bob", "Charlie"]) # "Bob" for me

A nd if you need to random ly choose a sam ple of elem ents w ithout replacem ent (i.e., w ith
no duplicates), you can use random.sample:

lottery_numbers = range(60)

winning_numbers = random.sample(lottery_numbers, 6) # [16, 36, 10, 6, 25, 9]

To choose a sam ple of elem ents w ith replacem ent (i.e., allow ing duplicates), you can just
m ake m ultiple calls to random.choice:

four_with_replacement = [random.choice(range(10))

 for _ in range(4)]

[9, 4, 4, 2]

R egular E xpressions
R egular expressions provide a w ay of searching text. They are incredibly useful but also
fairly com plicated, so m uch so that there are entire books w ritten about them . W e w ill
explain their details the few tim es w e encounter them ; here are a few exam ples of how to
use them in Python:

import re

print all([# all of these are true, because

 not re.match("a", "cat"), # * 'cat' doesn't start with 'a'

 re.search("a", "cat"), # * 'cat' has an 'a' in it

 not re.search("c", "dog"), # * 'dog' doesn't have a 'c' in it

 3 == len(re.split("[ab]", "carbs")), # * split on a or b to ['c','r','s']

 "R-D-" == re.sub("[0-9]", "-", "R2D2") # * replace digits with dashes

]) # prints True

O bject-O riented Program m ing
Like m any languages, Python allow s you to define classes that encapsulate data and the
functions that operate on them . W e‒ll use them som etim es to m ake our code cleaner and
sim pler. It‒s probably sim plest to explain them by constructing a heavily annotated
exam ple.

Im agine w e didn‒t have the built-in Python set. Then w e m ight w ant to create our ow n
Set class.

W hat behavior should our class have? G iven an instance of Set, w e‒ll need to be able to
add item s to it, remove item s from it, and check w hether it contains a certain value. W e‒ll
create all of these as m em ber functions, w hich m eans w e‒ll access them w ith a dot after a
Set object:

by convention, we give classes PascalCase names

class Set:

 # these are the member functions

 # every one takes a first parameter "self" (another convention)

 # that refers to the particular Set object being used

 def __init__(self, values=None):

 """This is the constructor.

 It gets called when you create a new Set.

 You would use it like

 s1 = Set() # empty set

 s2 = Set([1,2,2,3]) # initialize with values"""

 self.dict = {} # each instance of Set has its own dict property

 # which is what we'll use to track memberships

 if values is not None:

 for value in values:

 self.add(value)

 def __repr__(self):

 """this is the string representation of a Set object

 if you type it at the Python prompt or pass it to str()"""

 return "Set: " + str(self.dict.keys())

 # we'll represent membership by being a key in self.dict with value True

 def add(self, value):

 self.dict[value] = True

 # value is in the Set if it's a key in the dictionary

 def contains(self, value):

 return value in self.dict

 def remove(self, value):

 del self.dict[value]

W hich w e could then use like:

s = Set([1,2,3])

s.add(4)

print s.contains(4) # True

s.remove(3)

print s.contains(3) # False

Functional Tools
W hen passing functions around, som etim es w e‒ll w ant to partially apply (or curry)
functions to create new functions. A s a sim ple exam ple, im agine that w e have a function
of tw o variables:

def exp(base, power):

 return base ** power

and w e w ant to use it to create a function of one variable two_to_the w hose input is a
power and w hose output is the result of exp(2, power).

W e can, of course, do this w ith def, but this can som etim es get unw ieldy:

def two_to_the(power):

 return exp(2, power)

A different approach is to use functools.partial:

from functools import partial

two_to_the = partial(exp, 2) # is now a function of one variable

print two_to_the(3) # 8

You can also use partial to fill in later argum ents if you specify their nam es:

square_of = partial(exp, power=2)

print square_of(3) # 9

It starts to get m essy if you curry argum ents in the m iddle of the function, so w e‒ll try to
avoid doing that.

W e w ill also occasionally use map, reduce, and filter, w hich provide functional
alternatives to list com prehensions:

def double(x):

 return 2 * x

xs = [1, 2, 3, 4]

twice_xs = [double(x) for x in xs] # [2, 4, 6, 8]

twice_xs = map(double, xs) # same as above

list_doubler = partial(map, double) # *function* that doubles a list

twice_xs = list_doubler(xs) # again [2, 4, 6, 8]

You can use map w ith m ultiple-argum ent functions if you provide m ultiple lists:

def multiply(x, y): return x * y

products = map(multiply, [1, 2], [4, 5]) # [1 * 4, 2 * 5] = [4, 10]

Sim ilarly, filter does the w ork of a list-com prehension if:

def is_even(x):

 """True if x is even, False if x is odd"""

 return x % 2 == 0

x_evens = [x for x in xs if is_even(x)] # [2, 4]

x_evens = filter(is_even, xs) # same as above

list_evener = partial(filter, is_even) # *function* that filters a list

x_evens = list_evener(xs) # again [2, 4]

A nd reduce com bines the first tw o elem ents of a list, then that result w ith the third, that
result w ith the fourth, and so on, producing a single result:

x_product = reduce(multiply, xs) # = 1 * 2 * 3 * 4 = 24

list_product = partial(reduce, multiply) # *function* that reduces a list

x_product = list_product(xs) # again = 24

enum erate
N ot infrequently, you‒ll w ant to iterate over a list and use both its elem ents and their
indexes:

not Pythonic

for i in range(len(documents)):

 document = documents[i]

 do_something(i, document)

also not Pythonic

i = 0

for document in documents:

 do_something(i, document)

 i += 1

The Pythonic solution is enumerate, w hich produces tuples (index, element):

for i, document in enumerate(documents):

 do_something(i, document)

Sim ilarly, if w e just w ant the indexes:

for i in range(len(documents)): do_something(i) # not Pythonic

for i, _ in enumerate(documents): do_something(i) # Pythonic

W e‒ll use this a lot.

zip and A rgum ent U npacking
O ften w e w ill need to zip tw o or m ore lists together. zip transform s m ultiple lists into a
single list of tuples of corresponding elem ents:

list1 = ['a', 'b', 'c']

list2 = [1, 2, 3]

zip(list1, list2) # is [('a', 1), ('b', 2), ('c', 3)]

If the lists are different lengths, zip stops as soon as the first list ends.

You can also ―unzip‖ a list using a strange trick:

pairs = [('a', 1), ('b', 2), ('c', 3)]

letters, numbers = zip(*pairs)

The asterisk perform s argum ent unpacking, w hich uses the elem ents of pairs as
individual argum ents to zip. It ends up the sam e as if you‒d called:

zip(('a', 1), ('b', 2), ('c', 3))

w hich returns [('a','b','c'), ('1','2','3')].

You can use argum ent unpacking w ith any function:

def add(a, b): return a + b

add(1, 2) # returns 3

add([1, 2]) # TypeError!

add(*[1, 2]) # returns 3

It is rare that w e‒ll find this useful, but w hen w e do it‒s a neat trick.

args and kw args
Let‒s say w e w ant to create a higher-order function that takes as input som e function f and
returns a new function that for any input returns tw ice the value of f:

def doubler(f):

 def g(x):

 return 2 * f(x)

 return g

This w orks in som e cases:

def f1(x):

 return x + 1

g = doubler(f1)

print g(3) # 8 (== (3 + 1) * 2)

print g(-1) # 0 (== (-1 + 1) * 2)

H ow ever, it breaks dow n w ith functions that take m ore than a single argum ent:

def f2(x, y):

 return x + y

g = doubler(f2)

print g(1, 2) # TypeError: g() takes exactly 1 argument (2 given)

W hat w e need is a w ay to specify a function that takes arbitrary argum ents. W e can do this
w ith argum ent unpacking and a little bit of m agic:

def magic(*args, **kwargs):

 print "unnamed args:", args

 print "keyword args:", kwargs

magic(1, 2, key="word", key2="word2")

prints

unnamed args: (1, 2)

keyword args: {'key2': 'word2', 'key': 'word'}

That is, w hen w e define a function like this, args is a tuple of its unnam ed argum ents and
kwargs is a dict of its nam ed argum ents. It w orks the other w ay too, if you w ant to use a
list (or tuple) and dict to supply argum ents to a function:

def other_way_magic(x, y, z):

 return x + y + z

x_y_list = [1, 2]

z_dict = { "z" : 3 }

print other_way_magic(*x_y_list, **z_dict) # 6

You could do all sorts of strange tricks w ith this; w e w ill only use it to produce higher-
order functions w hose inputs can accept arbitrary argum ents:

def doubler_correct(f):

 """works no matter what kind of inputs f expects"""

 def g(*args, **kwargs):

 """whatever arguments g is supplied, pass them through to f"""

 return 2 * f(*args, **kwargs)

 return g

g = doubler_correct(f2)

print g(1, 2) # 6

W elcom e to D ataSciencester!
This concludes new -em ployee orientation. O h, and also, try not to em bezzle anything.

For Further E xploration
There is no shortage of Python tutorials in the w orld. The official one is not a bad place
to start.

The official IPython tutorial is not quite as good. You m ight be better off w ith their
videos and presentations. A lternatively, W es M cK inney‒s Python for D ata Analysis
(O ‒R eilly) has a really good IPython chapter.

C hapter 3. V isualizing D ata

I believe that visualization is one of the m ost pow erful m eans of achieving personal
goals.

H arvey M ackay

A fundam ental part of the data scientist‒s toolkit is data visualization. A lthough it is very
easy to create visualizations, it‒s m uch harder to produce good ones.

There are tw o prim ary uses for data visualization:

To explore data

To com m unicate data

In this chapter, w e w ill concentrate on building the skills that you‒ll need to start exploring
your ow n data and to produce the visualizations w e‒ll be using throughout the rest of the
book. Like m ost of our chapter topics, data visualization is a rich field of study that
deserves its ow n book. N onetheless, w e‒ll try to give you a sense of w hat m akes for a
good visualization and w hat doesn‒t.

m atplotlib
A w ide variety of tools exists for visualizing data. W e w ill be using the matplotlib
library, w hich is w idely used (although sort of show ing its age). If you are interested in
producing elaborate interactive visualizations for the W eb, it is likely not the right choice,
but for sim ple bar charts, line charts, and scatterplots, it w orks pretty w ell.

In particular, w e w ill be using the matplotlib.pyplot m odule. In its sim plest use, pyplot
m aintains an internal state in w hich you build up a visualization step by step. O nce you‒re
done, you can save it (w ith savefig()) or display it (w ith show()).

For exam ple, m aking sim ple plots (like Figure 3-1) is pretty sim ple:

from matplotlib import pyplot as plt

years = [1950, 1960, 1970, 1980, 1990, 2000, 2010]

gdp = [300.2, 543.3, 1075.9, 2862.5, 5979.6, 10289.7, 14958.3]

create a line chart, years on x-axis, gdp on y-axis

plt.plot(years, gdp, color='green', marker='o', linestyle='solid')

add a title

plt.title("Nominal GDP")

add a label to the y-axis

plt.ylabel("Billions of $")

plt.show()

Figure 3-1. A sim ple line chart

M aking plots that look publication-quality good is m ore com plicated and beyond the
scope of this chapter. There are m any w ays you can custom ize your charts w ith (for
exam ple) axis labels, line styles, and point m arkers. R ather than attem pt a com prehensive
treatm ent of these options, w e‒ll just use (and call attention to) som e of them in our
exam ples.

N O T E
A lthough w e w on‒t be using m uch of this functionality, matplotlib is capable of producing com plicated
plots w ithin plots, sophisticated form atting, and interactive visualizations. C heck out its docum entation if
you w ant to go deeper than w e do in this book.

B ar C harts
A bar chart is a good choice w hen you w ant to show how som e quantity varies am ong
som e discrete set of item s. For instance, Figure 3-2 show s how m any A cadem y Aw ards
w ere w on by each of a variety of m ovies:

movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"]

num_oscars = [5, 11, 3, 8, 10]

bars are by default width 0.8, so we'll add 0.1 to the left coordinates

so that each bar is centered

xs = [i + 0.1 for i, _ in enumerate(movies)]

plot bars with left x-coordinates [xs], heights [num_oscars]

plt.bar(xs, num_oscars)

plt.ylabel("# of Academy Awards")

plt.title("My Favorite Movies")

label x-axis with movie names at bar centers

plt.xticks([i + 0.5 for i, _ in enumerate(movies)], movies)

plt.show()

Figure 3-2. A sim ple bar chart

A bar chart can also be a good choice for plotting histogram s of bucketed num eric values,
in order to visually explore how the values are distributed, as in Figure 3-3:

grades = [83,95,91,87,70,0,85,82,100,67,73,77,0]

decile = lambda grade: grade // 10 * 10

histogram = Counter(decile(grade) for grade in grades)

plt.bar([x - 4 for x in histogram.keys()], # shift each bar to the left by 4

 histogram.values(), # give each bar its correct height

 8) # give each bar a width of 8

plt.axis([-5, 105, 0, 5]) # x-axis from -5 to 105,

 # y-axis from 0 to 5

plt.xticks([10 * i for i in range(11)]) # x-axis labels at 0, 10, ..., 100

plt.xlabel("Decile")

plt.ylabel("# of Students")

plt.title("Distribution of Exam 1 Grades")

plt.show()

Figure 3-3. U sing a bar chart for a histogram

The third argum ent to plt.bar specifies the bar w idth. H ere w e chose a w idth of 8 (w hich
leaves a sm all gap betw een bars, since our buckets have w idth 10). A nd w e shifted the bar
left by 4, so that (for exam ple) the ―80‖ bar has its left and right sides at 76 and 84, and
(hence) its center at 80.

The call to plt.axis indicates that w e w ant the x-axis to range from -5 to 105 (so that the
―0‖ and ―100‖ bars are fully show n), and that the y-axis should range from 0 to 5. A nd the
call to plt.xticks puts x-axis labels at 0, 10, 20, “ , 100.

B e judicious w hen using plt.axis(). W hen creating bar charts it is considered especially
bad form for your y-axis not to start at 0, since this is an easy w ay to m islead people
(Figure 3-4):

mentions = [500, 505]

years = [2013, 2014]

plt.bar([2012.6, 2013.6], mentions, 0.8)

plt.xticks(years)

plt.ylabel("# of times I heard someone say 'data science'")

if you don't do this, matplotlib will label the x-axis 0, 1

and then add a +2.013e3 off in the corner (bad matplotlib!)

plt.ticklabel_format(useOffset=False)

misleading y-axis only shows the part above 500

plt.axis([2012.5,2014.5,499,506])

plt.title("Look at the 'Huge' Increase!")

plt.show()

Figure 3-4. A chart w ith a m isleading y-axis

In Figure 3-5, w e use m ore-sensible axes, and it looks far less im pressive:

plt.axis([2012.5,2014.5,0,550])

plt.title("Not So Huge Anymore")

plt.show()

Figure 3-5. The sam e chart w ith a nonm isleading y-axis

L ine C harts
A s w e saw already, w e can m ake line charts using plt.plot(). These are a good choice
for show ing trends, as illustrated in Figure 3-6:

variance = [1, 2, 4, 8, 16, 32, 64, 128, 256]

bias_squared = [256, 128, 64, 32, 16, 8, 4, 2, 1]

total_error = [x + y for x, y in zip(variance, bias_squared)]

xs = [i for i, _ in enumerate(variance)]

we can make multiple calls to plt.plot

to show multiple series on the same chart

plt.plot(xs, variance, 'g-', label='variance') # green solid line

plt.plot(xs, bias_squared, 'r-.', label='bias^2') # red dot-dashed line

plt.plot(xs, total_error, 'b:', label='total error') # blue dotted line

because we've assigned labels to each series

we can get a legend for free

loc=9 means "top center"

plt.legend(loc=9)

plt.xlabel("model complexity")

plt.title("The Bias-Variance Tradeoff")

plt.show()

Figure 3-6. Several line charts w ith a legend

Scatterplots
A scatterplot is the right choice for visualizing the relationship betw een tw o paired sets of
data. For exam ple, Figure 3-7 illustrates the relationship betw een the num ber of friends
your users have and the num ber of m inutes they spend on the site every day:

friends = [70, 65, 72, 63, 71, 64, 60, 64, 67]

minutes = [175, 170, 205, 120, 220, 130, 105, 145, 190]

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

plt.scatter(friends, minutes)

label each point

for label, friend_count, minute_count in zip(labels, friends, minutes):

 plt.annotate(label,

 xy=(friend_count, minute_count), # put the label with its point

 xytext=(5, -5), # but slightly offset

 textcoords='offset points')

plt.title("Daily Minutes vs. Number of Friends")

plt.xlabel("# of friends")

plt.ylabel("daily minutes spent on the site")

plt.show()

Figure 3-7. A scatterplot of friends and tim e on the site

If you‒re scattering com parable variables, you m ight get a m isleading picture if you let
matplotlib choose the scale, as in Figure 3-8:

test_1_grades = [99, 90, 85, 97, 80]

test_2_grades = [100, 85, 60, 90, 70]

plt.scatter(test_1_grades, test_2_grades)

plt.title("Axes Aren't Comparable")

plt.xlabel("test 1 grade")

plt.ylabel("test 2 grade")

plt.show()

Figure 3-8. A scatterplot w ith uncom parable axes

If w e include a call to plt.axis("equal"), the plot (Figure 3-9) m ore accurately show s
that m ost of the variation occurs on test 2.

That‒s enough to get you started doing visualization. W e‒ll learn m uch m ore about
visualization throughout the book.

Figure 3-9. The sam e scatterplot w ith equal axes

For Further E xploration
seaborn is built on top of matplotlib and allow s you to easily produce prettier (and
m ore com plex) visualizations.

D 3.js is a JavaScript library for producing sophisticated interactive visualizations for
the w eb. A lthough it is not in Python, it is both trendy and w idely used, and it is w ell
w orth your w hile to be fam iliar w ith it.

B okeh is a new er library that brings D 3-style visualizations into Python.

ggplot is a Python port of the popular R library ggplot2, w hich is w idely used for
creating ―publication quality‖ charts and graphics. It‒s probably m ost interesting if
you‒re already an avid ggplot2 user, and possibly a little opaque if you‒re not.

C hapter 4. L inear A lgebra

Is there anything m ore useless or less useful than A lgebra?

B illy C onnolly

Linear algebra is the branch of m athem atics that deals w ith vector spaces. A lthough I
can‒t hope to teach you linear algebra in a brief chapter, it underpins a large num ber of
data science concepts and techniques, w hich m eans I ow e it to you to at least try. W hat w e
learn in this chapter w e‒ll use heavily throughout the rest of the book.

Vectors
A bstractly, vectors are objects that can be added together (to form new vectors) and that
can be m ultiplied by scalars (i.e., num bers), also to form new vectors.

C oncretely (for us), vectors are points in som e finite-dim ensional space. A lthough you
m ight not think of your data as vectors, they are a good w ay to represent num eric data.

For exam ple, if you have the heights, w eights, and ages of a large num ber of people, you
can treat your data as three-dim ensional vectors (height, weight, age). If you‒re
teaching a class w ith four exam s, you can treat student grades as four-dim ensional vectors
(exam1, exam2, exam3, exam4).

The sim plest from -scratch approach is to represent vectors as lists of num bers. A list of
three num bers corresponds to a vector in three-dim ensional space, and vice versa:

height_weight_age = [70, # inches,

 170, # pounds,

 40] # years

grades = [95, # exam1

 80, # exam2

 75, # exam3

 62] # exam4

O ne problem w ith this approach is that w e w ill w ant to perform arithm etic on vectors.
B ecause Python lists aren‒t vectors (and hence provide no facilities for vector arithm etic),
w e‒ll need to build these arithm etic tools ourselves. So let‒s start w ith that.

To begin w ith, w e‒ll frequently need to add tw o vectors. Vectors add com ponentw ise. This
m eans that if tw o vectors v and w are the sam e length, their sum is just the vector w hose
first elem ent is v[0] + w[0], w hose second elem ent is v[1] + w[1], and so on. (If they‒re
not the sam e length, then w e‒re not allow ed to add them .)

For exam ple, adding the vectors [1, 2] and [2, 1] results in [1 + 2, 2 + 1] or [3, 3],
as show n in Figure 4-1.

Figure 4-1. Adding tw o vectors

W e can easily im plem ent this by zip-ing the vectors together and using a list
com prehension to add the corresponding elem ents:

def vector_add(v, w):

 """adds corresponding elements"""

 return [v_i + w_i

 for v_i, w_i in zip(v, w)]

Sim ilarly, to subtract tw o vectors w e just subtract corresponding elem ents:

def vector_subtract(v, w):

 """subtracts corresponding elements"""

 return [v_i - w_i

 for v_i, w_i in zip(v, w)]

W e‒ll also som etim es w ant to com ponentw ise sum a list of vectors. That is, create a new
vector w hose first elem ent is the sum of all the first elem ents, w hose second elem ent is the
sum of all the second elem ents, and so on. The easiest w ay to do this is by adding one
vector at a tim e:

def vector_sum(vectors):

 """sums all corresponding elements"""

 result = vectors[0] # start with the first vector

 for vector in vectors[1:]: # then loop over the others

 result = vector_add(result, vector) # and add them to the result

 return result

If you think about it, w e are just reduce-ing the list of vectors using vector_add, w hich
m eans w e can rew rite this m ore briefly using higher-order functions:

def vector_sum(vectors):

 return reduce(vector_add, vectors)

or even:

vector_sum = partial(reduce, vector_add)

although this last one is probably m ore clever than helpful.

W e‒ll also need to be able to m ultiply a vector by a scalar, w hich w e do sim ply by
m ultiplying each elem ent of the vector by that num ber:

def scalar_multiply(c, v):

 """c is a number, v is a vector"""

 return [c * v_i for v_i in v]

This allow s us to com pute the com ponentw ise m eans of a list of (sam e-sized) vectors:

def vector_mean(vectors):

 """compute the vector whose ith element is the mean of the

 ith elements of the input vectors"""

 n = len(vectors)

 return scalar_multiply(1/n, vector_sum(vectors))

A less obvious tool is the dot product. The dot product of tw o vectors is the sum of their
com ponentw ise products:

def dot(v, w):

 """v_1 * w_1 + ... + v_n * w_n"""

 return sum(v_i * w_i

 for v_i, w_i in zip(v, w))

The dot product m easures how far the vector v extends in the w direction. For exam ple, if
w = [1, 0] then dot(v, w) is just the first com ponent of v. A nother w ay of saying this is
that it‒s the length of the vector you‒d get if you projected v onto w (Figure 4-2).

Figure 4-2. The dot product as vector projection

U sing this, it‒s easy to com pute a vector‒s sum of squares:

def sum_of_squares(v):

 """v_1 * v_1 + ... + v_n * v_n"""

 return dot(v, v)

W hich w e can use to com pute its m agnitude (or length):

import math

def magnitude(v):

 return math.sqrt(sum_of_squares(v)) # math.sqrt is square root function

W e now have all the pieces w e need to com pute the distance betw een tw o vectors, defined
as:

def squared_distance(v, w):

 """(v_1 - w_1) ** 2 + ... + (v_n - w_n) ** 2"""

 return sum_of_squares(vector_subtract(v, w))

def distance(v, w):

 return math.sqrt(squared_distance(v, w))

W hich is possibly clearer if w e w rite it as (the equivalent):

def distance(v, w):

 return magnitude(vector_subtract(v, w))

That should be plenty to get us started. W e‒ll be using these functions heavily throughout
the book.

N O T E
U sing lists as vectors is great for exposition but terrible for perform ance.

In production code, you w ould w ant to use the N um Py library, w hich includes a high-perform ance array
class w ith all sorts of arithm etic operations included.

M atrices
A m atrix is a tw o-dim ensional collection of num bers. W e w ill represent m atrices as lists
of lists, w ith each inner list having the sam e size and representing a row of the m atrix. If
A is a m atrix, then A[i][j] is the elem ent in the ith row and the jth colum n. Per
m athem atical convention, w e w ill typically use capital letters to represent m atrices. For
exam ple:

A = [[1, 2, 3], # A has 2 rows and 3 columns

 [4, 5, 6]]

B = [[1, 2], # B has 3 rows and 2 columns

 [3, 4],

 [5, 6]]

N O T E
In m athem atics, you w ould usually nam e the first row of the m atrix ―row 1‖ and the first colum n ―colum n
1.‖ B ecause w e‒re representing m atrices w ith Python lists, w hich are zero-indexed, w e‒ll call the first row
of a m atrix ―row 0‖ and the first colum n ―colum n 0.‖

G iven this list-of-lists representation, the m atrix A has len(A) row s and len(A[0])
colum ns, w hich w e consider its shape:

def shape(A):

 num_rows = len(A)

 num_cols = len(A[0]) if A else 0 # number of elements in first row

 return num_rows, num_cols

If a m atrix has n row s and k colum ns, w e w ill refer to it as a m atrix. W e can (and
som etim es w ill) think of each row of a m atrix as a vector of length k, and each
colum n as a vector of length n:

def get_row(A, i):

 return A[i] # A[i] is already the ith row

def get_column(A, j):

 return [A_i[j] # jth element of row A_i

 for A_i in A] # for each row A_i

W e‒ll also w ant to be able to create a m atrix given its shape and a function for generating
its elem ents. W e can do this using a nested list com prehension:

def make_matrix(num_rows, num_cols, entry_fn):

 """returns a num_rows x num_cols matrix

 whose (i,j)th entry is entry_fn(i, j)"""

 return [[entry_fn(i, j) # given i, create a list

 for j in range(num_cols)] # [entry_fn(i, 0), ...]

 for i in range(num_rows)] # create one list for each i

G iven this function, you could m ake a 5 Õ 5 identity m atrix (w ith 1s on the diagonal and
0s elsew here) w ith:

def is_diagonal(i, j):

 """1's on the 'diagonal', 0's everywhere else"""

 return 1 if i == j else 0

identity_matrix = make_matrix(5, 5, is_diagonal)

[[1, 0, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 0, 0, 1]]

M atrices w ill be im portant to us for several reasons.

First, w e can use a m atrix to represent a data set consisting of m ultiple vectors, sim ply by
considering each vector as a row of the m atrix. For exam ple, if you had the heights,
w eights, and ages of 1,000 people you could put them in a m atrix:

data = [[70, 170, 40],

 [65, 120, 26],

 [77, 250, 19],

 #

]

Second, as w e‒ll see later, w e can use an m atrix to represent a linear function that
m aps k-dim ensional vectors to n-dim ensional vectors. Several of our techniques and
concepts w ill involve such functions.

Third, m atrices can be used to represent binary relationships. In C hapter 1, w e represented
the edges of a netw ork as a collection of pairs (i, j). A n alternative representation w ould
be to create a m atrix A such that A[i][j] is 1 if nodes i and j are connected and 0
otherw ise.

R ecall that before w e had:

friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),

 (4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)]

W e could also represent this as:

 # user 0 1 2 3 4 5 6 7 8 9

 #

friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0

 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1

 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2

 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3

 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4

 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5

 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6

 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7

 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8

 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9

If there are very few connections, this is a m uch m ore inefficient representation, since you
end up having to store a lot of zeroes. H ow ever, w ith the m atrix representation it is m uch
quicker to check w hether tw o nodes are connected you just have to do a m atrix lookup
instead of (potentially) inspecting every edge:

friendships[0][2] == 1 # True, 0 and 2 are friends

friendships[0][8] == 1 # False, 0 and 8 are not friends

Sim ilarly, to find the connections a node has, you only need to inspect the colum n (or the
row) corresponding to that node:

friends_of_five = [i # only need

 for i, is_friend in enumerate(friendships[5]) # to look at

 if is_friend] # one row

Previously w e added a list of connections to each node object to speed up this process, but
for a large, evolving graph that w ould probably be too expensive and difficult to m aintain.

W e‒ll revisit m atrices throughout the book.

For Further E xploration
Linear algebra is w idely used by data scientists (frequently im plicitly, and not
infrequently by people w ho don‒t understand it). It w ouldn‒t be a bad idea to read a
textbook. You can find several freely available online:
Linear A lgebra, from U C D avis

Linear A lgebra, from Saint M ichael‒s C ollege

If you are feeling adventurous, Linear A lgebra D one W rong is a m ore advanced
introduction

A ll of the m achinery w e built here you get for free if you use N um Py. (You get a lot
m ore too.)

C hapter 5. Statistics

Facts are stubborn, but statistics are m ore pliable.

M ark Tw ain

Statistics refers to the m athem atics and techniques w ith w hich w e understand data. It is a
rich, enorm ous field, m ore suited to a shelf (or room) in a library rather than a chapter in a
book, and so our discussion w ill necessarily not be a deep one. Instead, I‒ll try to teach
you just enough to be dangerous, and pique your interest just enough that you‒ll go off and
learn m ore.

D escribing a Single Set of D ata
Through a com bination of w ord-of-m outh and luck, D ataSciencester has grow n to dozens
of m em bers, and the V P of Fundraising asks you for som e sort of description of how m any
friends your m em bers have that he can include in his elevator pitches.

U sing techniques from C hapter 1, you are easily able to produce this data. B ut now you
are faced w ith the problem of how to describe it.

O ne obvious description of any data set is sim ply the data itself:

num_friends = [100, 49, 41, 40, 25,

 # ... and lots more

]

For a sm all enough data set this m ight even be the best description. B ut for a larger data
set, this is unw ieldy and probably opaque. (Im agine staring at a list of 1 m illion num bers.)
For that reason w e use statistics to distill and com m unicate relevant features of our data.

A s a first approach you put the friend counts into a histogram using Counter and
plt.bar() (Figure 5-1):

friend_counts = Counter(num_friends)

xs = range(101) # largest value is 100

ys = [friend_counts[x] for x in xs] # height is just # of friends

plt.bar(xs, ys)

plt.axis([0, 101, 0, 25])

plt.title("Histogram of Friend Counts")

plt.xlabel("# of friends")

plt.ylabel("# of people")

plt.show()

