Joel Grus

1E11CE

-
=
O
O O
N
O
J=

—
o
< =
—
-
o
=
=
=
v
Ll
—l
e
-
=
(o
o
—
v
e
L

Data

Data Science from Scratch

Joel Grus

Data Science from Scratch

by Joel Grus

Copyright © 2015 O-Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O-Rellly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O-Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or

cor porate@oreilly.com.

» Editor: Marie Beaugureau

= Production Editor: Melanie Yarbrough
» Copyeditor: Nan Reinhardt

» Proofreader: Eileen Cohen

» |ndexer: Ellen Troutman-Zaig

» [nterior Designer: David Futato

m Cover Designer: Karen Montgomery
m ||lustrator: Rebecca Demarest

m April 2015: First Edition

Revision History for the First Edition
= 2015-04-10: First Release

See http://oreilly.com/catal og/errata.csp? sbn=9781491901427 for release details.

The O-Relilly logo is aregistered trademark of O-Rellly Media, Inc. Data Science from
Scratch, the cover image of a Rock Ptarmigan, and related trade dress are trademarks of
O-Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in thiswork is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-90142-7
[LSI]

Preface

Data Science

Data scientist has been called —the sexiest job of the 21st century,ll presumably by
someone who has never visited afire station. Nonetheless, data science is a hot and
growing field, and it doesn- take a great deal of sleuthing to find analysts breathlessly
prognosticating that over the next 10 years, we-H need billions and billions more data
scientists than we currently have.

But what is data science? After all, we can+ produce data scientists if we don+t know what
data scienceis. According to a Venn diagram that is somewhat famous in the industry, data
science lies at the intersection of:

m Hacking skills
» Math and statistics knowledge
» Substantive expertise

Although | originally intended to write a book covering all three, | quickly realized that a
thorough treatment of —substantive expertisell would require tens of thousands of pages. At
that point, | decided to focus on the first two. My goal is to help you develop the hacking
skills that you-H need to get started doing data science. And my goal isto help you get
comfortable with the mathematics and statistics that are at the core of data science.

Thisis a somewhat heavy aspiration for abook. The best way to learn hacking skillsis by
hacking on things. By reading this book, you will get a good understanding of the way |
hack on things, which may not necessarily be the best way for you to hack on things. You
will get a good understanding of some of the tools | use, which will not necessarily be the
best tools for you to use. You will get a good understanding of the way | approach data
problems, which may not necessarily be the best way for you to approach data problems.
The intent (and the hope) is that my examples will inspire you try things your own way.
All the code and data from the book is available on GitHub to get you started.

Similarly, the best way to learn mathematicsis by doing mathematics. Thisis emphatically
not a math book, and for the most part, we won- be —doing mathematics.ll However, you
can+ really do data science without some understanding of probability and statistics and
linear algebra. This means that, where appropriate, we will dive into mathematical
equations, mathematical intuition, mathematical axioms, and cartoon versions of big
mathematical ideas. | hope that you won+ be afraid to dive in with me.

Throughout it all, | al'so hope to give you a sense that playing with datais fun, because,
well, playing with datais fun! (Especially compared to some of the alternatives, like tax
preparation or coal mining.)

From Scratch

There are lots and lots of data science libraries, frameworks, modules, and toolkits that
efficiently implement the most common (as well as the least common) data science
algorithms and techniques. If you become a data scientist, you will become intimately
familiar with NumPy, with scikit-learn, with pandas, and with a panoply of other libraries.
They are great for doing data science. But they are also a good way to start doing data
science without actually understanding data science.

In this book, we will be approaching data science from scratch. That means we- be
building tools and implementing algorithms by hand in order to better understand them. |
put alot of thought into creating implementations and examples that are clear, well-
commented, and readable. In most cases, the tools we build will be illuminating but
impractical. They will work well on small toy data sets but fall over on —web scalell ones.

Throughout the book, | will point you to libraries you might use to apply these techniques
to larger data sets. But we won+ be using them here.

There is ahealthy debate raging over the best language for learning data science. Many
people believe it-s the statistical programming language R. (We call those people wrong.)
A few people suggest Java or Scala. However, in my opinion, Python is the obvious
choice.

Python has severa features that make it well suited for learning (and doing) data science:

n |tsfree
» |tsrelatively ssmpleto codein (and, in particular, to understand).
m |t haslots of useful data science related libraries.

| am hesitant to call Python my favorite programming language. There are other languages
| find more pleasant, better-designed, or just more fun to code in. And yet pretty much
every time | start a new data science project, | end up using Python. Every time | need to
quickly prototype something that just works, | end up using Python. And every time |
want to demonstrate data science concepts in a clear, easy-to-understand way, | end up
using Python. Accordingly, this book uses Python.

The goal of this book is not to teach you Python. (Although it is nearly certain that by
reading this book you will learn some Python.) |41 take you through a chapter-long crash
course that highlights the features that are most important for our purposes, but if you
know nothing about programming in Python (or about programming at all) then you might
want to supplement this book with some sort of —Python for Beginnersll tutorial.

The remainder of our introduction to data science will take this same approach f going
into detail where going into detail seems crucial or illuminating, at other times leaving
details for you to figure out yourself (or look up on Wikipedia).

Over the years, I-ve trained a number of data scientists. While not all of them have gone
on to become world-changing data ninja rockstars, I-ve left them all better data scientists
than | found them. And I-ve grown to believe that anyone who has some amount of
mathematical aptitude and some amount of programming skill has the necessary raw
materials to do data science. All she needsis an inquisitive mind, awillingness to work
hard, and this book. Hence this book.

Conventions Used in This Book

The following typographical conventions are used in this book:

[talic
Indicates new terms, URLS, email addresses, filenames, and file extensions.
Constant wi dth

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

TIP

This element signifies atip or suggestion.

NOTE

This element signifies a general note.

This element indicates awarning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.convjoel grus/data-science-from-scratch.

Thisbook is here to help you get your job done. In general, if example code is offered
with this book, you may useit in your programs and documentation. You do not need to
contact us for permission unless you+e reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O-Rellly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product-s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: -Bata Science from Scratch by Joel Grus
(O-Relilly). Copyright 2015 Joel Grus, 978-1-4919-0142-7.I

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari- Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world-s |eading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers arange of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O-Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

» O-Reilly Media, Inc.

» 1005 Gravenstein Highway North

m Sebastopol, CA 95472

m 800-998-9938 (in the United States or Canada)

m 707-829-0515 (international or local)

= 707-829-0104 (fax)
We have aweb page for this book, where we list errata, examples, and any additional

information. You can access this page at http://bit.|ly/data-science-from-scratch.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.conVoreillymedia
Watch us on YouTube: http://www.youtube.convoreillymedia

Acknowledgments

First, | would like to thank Mike Loukides for accepting my proposal for this book (and
for insisting that | pare it down to areasonable size). It would have been very easy for him
to say, YWho-s this person who keeps emailing me sample chapters, and how do | get him
to go away?ll |-m grateful he didn+. 1-d also like to thank my editor, Marie Beaugureau,
for guiding me through the publishing process and getting the book in a much better state
than | ever would have gotten it on my own.

| couldn+ have written this book if I-d never learned data science, and | probably wouldn-
have learned data science if not for the influence of Dave Hsu, Igor Tatarinov, John
Rauser, and the rest of the Farecast gang. (So long ago that it wasn even called data
science at the time!) The good folks at Coursera deserve alot of credit, too.

| am also grateful to my beta readers and reviewers. Jay Fundling found aton of mistakes
and pointed out many unclear explanations, and the book is much better (and much more
correct) thanks to him. Debashis Ghosh is a hero for sanity-checking al of my statistics.
Andrew Musselman suggested toning down the —people who prefer R to Python are moral
reprobatesll aspect of the book, which | think ended up being pretty good advice. Trey
Causey, Ryan Matthew Balfanz, Loris Mularoni, Ngria Pujol, Rob Jefferson, Mary Pat
Campbell, Zach Geary, and Wendy Grus also provided invaluable feedback. Any errors
remaining are of course my responsibility.

| owe alot to the Twitter #datascience commmunity, for exposing me to aton of new
concepts, introducing meto alot of great people, and making me feel like enough of an
underachiever that | went out and wrote a book to compensate. Special thanksto Trey
Causey (again), for (inadvertently) reminding me to include a chapter on linear algebra,
and to Sean J. Taylor, for (inadvertently) pointing out a couple of huge gapsin the
—Working with Datall chapter.

Above al, | owe immense thanks to Ganga and Madeline. The only thing harder than
writing abook is living with someone who-s writing a book, and | couldn- have pulled it
off without their support.

Chapter 1. Introduction

—DPatal Datal Datalll he cried impatiently. +can+ make bricks without clay.ll
Arthur Conan Doyle

The Ascendance of Data

We livein aworld that-s drowning in data. Websites track every user-s every click. Your
smartphone is building up arecord of your location and speed every second of every day.
—Quantified selfersll wear pedometers-on-steroids that are ever recording their heart rates,
movement habits, diet, and sleep patterns. Smart cars collect driving habits, smart homes
collect living habits, and smart marketers collect purchasing habits. The Internet itself
represents a huge graph of knowledge that contains (among other things) an enormous
cross-referenced encyclopedia; domain-specific databases about movies, music, sports
results, pinball machines, memes, and cocktails; and too many government statistics
(some of them nearly true!) from too many governments to wrap your head around.

Buried in these data are answers to countless questions that no one-s ever thought to ask.
In this book, we-l learn how to find them.

What | s Data Science?

Theres ajoke that says a data scientist is someone who knows more statistics than a
computer scientist and more computer science than a stetistician. (I didn+ say it wasa
good joke.) In fact, some data scientistsareT for all practical purposest statisticians,
while others are pretty much indistinguishable from software engineers. Some are
machine-learning experts, while others couldn+ machine-learn their way out of
kindergarten. Some are PhDs with impressive publication records, while others have never
read an academic paper (shame on them, though). In short, pretty much no matter how you
define data science, you find practitioners for whom the definition is totally, absolutely
wrong.

Nonetheless, we won+ let that stop us from trying. We-l say that a data scientist is
someone who extracts insights from messy data. Today-s world is full of people trying to
turn data into insight.

For instance, the dating site OkCupid asks its members to answer thousands of questions
in order to find the most appropriate matches for them. But it also analyzes these results to
figure out innocuous-sounding gquestions you can ask someone to find out how likely
someone is to sleep with you on the first date.

Facebook asks you to list your hometown and your current location, ostensibly to make it
easier for your friends to find and connect with you. But it also analyzes these locations to
identify global migration patterns and where the fanbases of different football teamslive.

Asalargeretailer, Target tracks your purchases and interactions, both online and in-store.
And it uses the data to predictively model which of its customers are pregnant, to better
market baby-related purchases to them.

In 2012, the Obama campaign employed dozens of data scientists who data-mined and
experimented their way to identifying voters who needed extra attention, choosing optimal
donor-specific fundraising appeals and programs, and focusing get-out-the-vote efforts
where they were most likely to be useful. It is generally agreed that these efforts played an
important role in the president-s re-election, which meansit is a safe bet that political
campaigns of the future will become more and more data-driven, resulting in a never-
ending arms race of data science and data collection.

Now, before you start feeling too jaded: some data scientists also occasionally use their
skillsfor goodf using datato make government more effective, to help the homeless,

and to improve public health. But it certainly won+ hurt your career if you like figuring
out the best way to get people to click on advertisements.

Motivating Hypothetical: DataSciencester

Congratulations! You-ve just been hired to lead the data science efforts at DataSciencester,
the social network for data scientists.

Despite being for data scientists, DataSciencester has never actually invested in building
Its own data science practice. (In fairness, DataSciencester has never really invested in
building its product either.) That will be your job! Throughout the book, we-l be learning
about data science concepts by solving problems that you encounter at work. Sometimes
we-H look at data explicitly supplied by users, sometimes we-l ook at data generated
through their interactions with the site, and sometimes we- even look at datafrom
experiments that we- design.

And because DataSciencester has a strong —ot-invented-herell mentality, wel be
building our own tools from scratch. At the end, you-+ have a pretty solid understanding
of the fundamentals of data science. And you-| be ready to apply your skills at a company
with aless shaky premise, or to any other problems that happen to interest you.

Welcome aboard, and good luck! (You-re allowed to wear jeans on Fridays, and the
bathroom is down the hall on the right.)

Finding Key Connectors

Its your first day on the job at DataSciencester, and the VP of Networking isfull of
guestions about your users. Until now he-s had no one to ask, so he-s very excited to have
you aboard.

In particular, he wants you to identify who the —key connectorsll are among data scientists.
To this end, he gives you a dump of the entire DataSciencester network. (In redl life,
people don+ typically hand you the data you need. Chapter 9 is devoted to getting data.)

What does this data dump look like? It consists of alist of users, each represented by a
di ct that contains for each user hisor heri d (which isanumber) and nane (which, in one
of the great cosmic coincidences, rhymes with the user-si d):

users = [

{ "id": 0, "nane": "Hero" },
{ "id": 1, "nane": "Dunn" },
{ "id": 2, "nane": "Sue" }

{ "id": 3, "nane": "Chi" }

{ "id": 4, "nane": "Thor" },
{ "id": 5, "nane": "dive" }
{ "id": 6, "nane": "Hicks" },
{ "id": 7, "nane": "Devin" }
{ "id": 8, "nane": "Kate" },
{ "id": 9, "nane": "Klein" }

]

He also gives you the —friendshipll data, represented as alist of pairs of IDs:

friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),
(4, 5), (5, 6), (5 7), (6, 8), (7, 8), (8, 9]

For example, thetuple (0, 1) indicates that the data scientist withi d O (Hero) and the
datascientist withi d 1 (Dunn) are friends. The network isillustrated in Figure 1-1.

Figure 1-1. The DataSciencester network

Since we represented our users as di ct S, it-s easy to augment them with extra data.

NOTE

Don+ get too hung up on the details of the code right now. In Chapter 2, we-l take you through a crash
course in Python. For now just try to get the general flavor of what we—e doing.

For example, we might want to add alist of friends to each user. First we set each user-s
friends property to an empty list:

for user in users:
user["friends"] =[]

And then we populate the lists using the f ri endshi ps data:

for i, j in friendships:
this works because users[i] is the user whose id is
users[i]["friends"].append(users[j]) # add i as a friend of |
users[j]["friends"].append(users[i]) # add] as a friend of

Once each user di ct containsalist of friends, we can easily ask questions of our graph,
like ~what-s the average number of connections?I

First we find the total number of connections, by summing up the lengths of all the
friends lists:

def nunber_of _friends(user):
"""how many friends does _user_ have?"""
return len(user["friends"]) # length of friend_ids Iist

total _connections = sun(nunber_of _friends(user)
for user in users) # 24

And then we just divide by the number of users:

from i mport division integer division is |anme
num.users = | en(users) length of the users |ist
avg_connections = total _connections / num.users # 2.4

#
#

It-s aso easy to find the most connected people’ they-re the people who have the largest
number of friends.

Since there arent very many users, we can sort them from —most friendsll to —teast
friendsll:

create a list (user_id, nunber_of_friends)
numfriends_by id = [(user["id"], nunber_of friends(user))
for user in users]

sorted(numfriends_by_id, # get it sorted
key=l anbda (user_id, numfriends): numfriends, # by numfriends
reverse=Tr ue) # largest to small est

each pair is (user_id, numfriends)
(1, 3), (2, 3), (3, 3), (5 3), (8 3),
(0, 2), (4, 2), (6, 2), (7, 2), (9, 1)]

One way to think of what we-ve done is as away of identifying people who are somehow
central to the network. In fact, what we-ve just computed is the network metric degree
centrality (Figure 1-2).

Figure 1-2. The DataSciencester network sized by degree

This hasthe virtue of being pretty easy to calculate, but it doesn+ always give the results
you-d want or expect. For example, in the DataSciencester network Thor (i d 4) only has
two connections while Dunn (i d 1) hasthree. Yet looking at the network it intuitively
seems like Thor should be more central. In Chapter 21, wedl investigate networks in more
detail, and we-l look at more complex notions of centrality that may or may not accord
better with our intuition.

Data Scientists You May Know

While you—e still filling out new-hire paperwork, the VP of Fraternization comes by your
desk. She wants to encourage more connections among your members, and she asks you
to design a—bBata Scientists You May Knowll suggester.

Your first instinct is to suggest that a user might know the friends of friends. These are
easy to compute: for each of a user-sfriends, iterate over that person-s friends, and collect
all the results:

def friends_of_friend_ids_bad(user):
"foaf" is short for "friend of a friend"
return [foaf["id"]
for friend in user["friends"] # for each of user's friends
for foaf in friend["friends"]] # get each of _their_ friends

When we call thison users[0] (Hero), it produces:

[0, 2, 3, 0, 1, 3]

It includes user O (twice), since Hero isindeed friends with both of hisfriends. It includes
users 1 and 2, although they are both friends with Hero already. And it includes user 3
twice, as Chi is reachable through two different friends:

print [friend["id"] for friend in users[O]["friends"]] # [1, 2]
print [friend["id"] for friend in users[1]["friends"]] # [0, 2, 3]
print [friend["id"] for friend in users[2]["friends"]] # [0, 1, 3]

Knowing that people are friends-of-friends in multiple ways seems like interesting
information, so maybe instead we should produce a count of mutual friends. And we
definitely should use a helper function to exclude people aready known to the user:

from i mport Counter # not | oaded by defaul t

def not_the_sane(user, other_user):
"""two users are not the sane if they have different ids"""
return user["id"] != other_user["id"]

def not_friends(user, other_user):
"""other_user is not a friend if he's not in user["friends"];
that is, if he's not_the_sane as all the people in user["friends"]"""
return all (not_the_sanme(friend, other_user)
for friend in user["friends"])

def friends_of _friend_ids(user):
return Counter(foaf["id"]
for friend in user["friends"]
for foaf in friend["friends"]
if not_the_same(user, foaf)
and not_friends(user, foaf))

for each of my friends
count *their* friends
who aren't me

and aren't ny friends

print friends_of friend_ids(users[3]) # Counter({0: 2, 5: 1})

This correctly tells Chi (i d 3) that she has two mutual friends with Hero (i d 0) but only
one mutual friend with Clive (i d 5).

As adata scientist, you know that you also might enjoy meeting users with similar

interests. (Thisis agood example of the —substantive expertisell aspect of data science.)
After asking around, you manage to get your hands on this data, asalist of pairs
(user_id, interest):

interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java")
(0, "Spark"), (0, "Storn'), (0, "Cassandra")
(1, "NosQ"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),
(2, "numpy"), (2, "statsnodels"), (2, "pandas"), (3, "R'), (3, "Python"),
(3, "statistics"), (3, "regression"), (3, "probability"),
(4, "machine learning"), (4, "regression"), (4, "decision trees"),
(4, "libsvm), (5, "Python"), (5, "R'), (5, "Java"), (5, "C++")
(5, "Haskell"), (5, "programm ng | anguages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory")
(7, "machine learning"), (7, "scikit-learn"), (7, "Mhout"),
(7, "neural networks"), (8, "neural networks"), (8, "deep |learning"),
(8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop")
(9, "Java"), (9, "MapReduce"), (9, "Big Data")

For example, Thor (i d 4) has no friends in common with Devin (i d 7), but they share an
interest in machine learning.

It-s easy to build afunction that finds users with a certain interest:

def data_scientists_who_|ike(target_interest):
return [user_id
for user_id, user_interest in interests
if user_interest == target_interest]

Thisworks, but it has to examine the whole list of interests for every search. If we have a
lot of users and interests (or if we just want to do alot of searches), we—+e probably better
off building an index from interests to users.

from i mport defaul tdict

keys are interests, values are lists of user_ids with that interest
user _ids_by interest = defaultdict(list)

for user_id, interest in interests:
user _ids_by interest[interest].append(user_id)

And another from users to interests:
keys are user_ids, values are lists of interests for that user_id
interests_by user_id = defaultdict(list)

for user_id, interest in interests:
interests_by user_id[user_id].append(interest)

Now it-s easy to find who has the most interests in common with a given user:

m |terate over the user-s interests.
m For each interest, iterate over the other users with that interest.

m Keep count of how many times we see each other user.

def nobst_common_interests_w th(user):
return Counter(interested_user_id
for interest in interests_by user_id[fuser["id"]]
for interested_user_id in user_ids_by interest[interest]
if interested_user_id != user["id"])

We could then use this to build aricher -Bata Scientists You Should Knowll feature based
on a combination of mutual friends and mutual interests. We-l explore these kinds of
applications in Chapter 22.

Salaries and Experience

Right as you—e about to head to lunch, the VP of Public Relations asksif you can provide
some fun facts about how much data scientists earn. Salary datais of course sensitive, but
he manages to provide you an anonymous data set containing each userssal ary (in

dollars) and t enur e asa data scientist (in years):

sal ari es_and_tenures = [(83000, 8.7), (88000, 8.1),
(48000, 0.7), (76000, 6),
(69000, 6.5), (76000, 7.5),
(60000, 2.5), (83000, 10),
(48000, 1.9), (63000, 4.2)]

The natural first step isto plot the data (which wel see how to do in Chapter 3). You can
see the resultsin Figure 1-3.

100000 | Salla ry by Yealrs Experlerl'uce

90000

80000

70000

Salary

60000

50000

40000
0 2 4 6 8 10 12

Years Experience

Figure 1-3. Salary by years of experience

It seems pretty clear that people with more experience tend to earn more. How can you
turn thisinto afun fact? Your first ideaisto ook at the average salary for each tenure:

keys are years, values are lists of the salaries for each tenure
salary_by tenure = defaultdict(list)

for salary, tenure in salaries_and_tenures
sal ary_by_tenure[tenure].append(sal ary)

keys are years, each value is average salary for that tenure
average_sal ary_by_tenure = {

tenure : sum(salaries) / len(salaries)

for tenure, salaries in salary_by tenure.itens()

Thisturns out to be not particularly useful, as none of the users have the same tenure,
which means we-re just reporting the individual users—salaries:

48000.
48000.
60000.
63000.
76000. 0,
69000. 0,
76000. 0,
88000. 0,

0

}

NN
LoeL

NRao

. 83000. 0,
0: 83000.0

BERoNor~NMEPO

It might be more helpful to bucket the tenures:

def tenure_bucket(tenure):
if tenure < 2
return "l ess than two"
elif tenure < 5
return "between two and five"
el se:
return "nore than five"

Then group together the salaries corresponding to each bucket:

keys are tenure buckets, values are lists of salaries for that bucket
sal ary_by _tenure_bucket = defaultdict(list)

for salary, tenure in salaries_and_tenures
bucket = tenure_bucket (tenure)
sal ary_by_tenure_bucket[bucket]. append(sal ary)

And finally compute the average salary for each group:

keys are tenure buckets, values are average salary for that bucket
average_sal ary_by_bucket = {

tenure_bucket : sun(salaries) / |len(salaries)

for tenure_bucket, salaries in salary_by tenure_bucket.iteritens()

}

which is more interesting:

{' between two and five': 61500.0,
"less than two': 48000. 0,
"more than five': 79166. 66666666667}

And you have your soundbite: -Bata scientists with more than five years experience earn
65% more than data scientists with little or no experience!ll

But we chose the buckets in a pretty arbitrary way. What we-d really like isto make some
sort of statement about the salary effect] onaveragef of having an additional year of

experience. In addition to making for a snappier fun fact, this allows us to make
predictions about salaries that we don+t know. Wel explore thisideain Chapter 14.

Paid Accounts

When you get back to your desk, the VP of Revenue iswaiting for you. She wants to
better understand which users pay for accounts and which don+. (She knows their names,
but that-s not particularly actionable information.)

You notice that there seems to be a correspondence between years of experience and paid
accounts;

pai d
unpai d
pai d
unpai d

N O1 O N

unpai d
unpai d
unpai d
unpai d
pai d
0 paid

E®OoNoOORNEO
~N R oo

Users with very few and very many years of experience tend to pay; users with average
amounts of experience don-.

Accordingly, if you wanted to create amodel T though thisis definitely not enough data
to base amodel onT you might try to predict —paidll for users with very few and very
many years of experience, and —anpaidll for users with middling amounts of experience:

def predict_pai d_or_unpai d(years_experience):
if years_experience < 3.0
return "paid"
elif years_experience < 8.5:
return "unpaid"
el se:
return "paid"

Of course, we totally eyeballed the cutoffs.

With more data (and more mathematics), we could build a model predicting the likelihood
that a user would pay, based on his years of experience. WeHl investigate this sort of
problem in Chapter 16.

Topics of Interest

Asyou~e wrapping up your first day, the VP of Content Strategy asks you for data about
what topics users are most interested in, so that she can plan out her blog calendar
accordingly. You already have the raw data from the friend-suggester project:

interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java")
(0, "Spark"), (0, "Storn'), (0, "Cassandra")
(1, "NosQ"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase")
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),
(2, "numpy"), (2, "statsnodels"), (2, "pandas"), (3, "R'), (3, "Python"),
(3, "statistics"), (3, "regression"), (3, "probability"),
(4, "machine learning"), (4, "regression"), (4, "decision trees"),
(4, "libsvm), (5, "Python"), (5, "R'), (5, "Java"), (5, "C++"),
(5, "Haskell"), (5, "programm ng | anguages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory")
(7, "machine learning"), (7, "scikit-learn"), (7, "Mhout"),
(7, "neural networks"), (8, "neural networks"), (8, "deep |learning"),
(8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop")
(9, "Java"), (9, "MapReduce"), (9, "Big Data")

One simple (if not particularly exciting) way to find the most popular interestsis simply to
count the words:

1. Lowercase each interest (since different users may or may not capitalize their
Interests).

2. Split it into words.
3. Count the results.

In code:

wor ds_and_counts = Count er (word
for user, interest in interests
for word in interest.lower().split())

Thismakesit easy to list out the words that occur more than once:

for word, count in words_and_counts. nost_conmmon():
if count > 1:
print word, count

which gives the results you-d expect (unless you expect —scikit-learnll to get split into two
words, in which case it doesn+ give the results you expect):

| earning 3
java 3

pyt hon 3

big 3

data 3

hbase 2
regression 2
cassandra 2
statistics 2
probability 2
hadoop 2

net wor ks 2
machi ne 2
neural 2
scikit-learn 2
r 2

We-H look at more sophisticated ways to extract topics from data in Chapter 20.

Onward

|t-s been a successful first day! Exhausted, you slip out of the building before anyone else
can ask you for anything else. Get a good night-s rest, because tomorrow is new employee
orientation. (Yes, you went through afull day of work before new employee orientation.
Take it up with HR.)

Chapter 2. A Crash Coursein Python

People are still crazy about Python after twenty-five years, which | find hard to believe.
Michael Palin

All new employees at DataSciencester are required to go through new employee
orientation, the most interesting part of which is a crash course in Python.

Thisis not acomprehensive Python tutorial but instead is intended to highlight the parts of

the language that will be most important to us (some of which are often not the focus of
Python tutorials).

The Basics

Getting Python

You can download Python from python.org. But if you don+ already have Python, |
recommend instead installing the Anaconda distribution, which already includes most of
the libraries that you need to do data science.

As | write this, the latest version of Python is 3.4. At DataSciencester, however, we use
old, reliable Python 2.7. Python 3 is not backward-compatible with Python 2, and many
important libraries only work well with 2.7. The data science community is still firmly
stuck on 2.7, which means we will be, too. Make sure to get that version.

If you don+ get Anaconda, make sure to install pip, which is a Python package manager
that allows you to easily install third-party packages (some of which we-l need). Itsalso
worth getting | Python, which isamuch nicer Python shell to work with.

(If you installed Anaconda then it should have come with pip and IPython.)

Just run:

pip install ipython

and then search the Internet for solutions to whatever cryptic error messages that causes.

The Zen of Python
Python has a somewhat Zen description of its design principles, which you can also find
inside the Python interpreter itself by typingi nport this.
One of the most discussed of theseis:
There should be onef and preferably only onef obviousway to do it.

Code written in accordance with this—ebviousll way (which may not be obvious at all to a
newcomer) is often described as —Rythonic.ll Although thisis not abook about Python, we
will occasionally contrast Pythonic and non-Pythonic ways of accomplishing the same
things, and we will generally favor Pythonic solutions to our problems.

Whitespace For matting

Many languages use curly braces to delimit blocks of code. Python uses indentation:

for i in[1, 2, 3, 4, 5]:

print i # first line in "for i" block
for j in[1, 2, 3, 4, 5]:
print j # first line in "for j" block
print i +j # last line in "for j" block

print i # last line in "for i" block
print "done | ooping"

This makes Python code very readable, but it also means that you have to be very careful
with your formatting. Whitespace isignored inside parentheses and brackets, which can be
helpful for long-winded computations:

I ong_wi nded_conputation = (1 +2 +3 +4 +5+ 6+ 7+ 8+ 9+ 10 + 11 + 12 +
13 + 14 + 15 + 16 + 17 + 18 + 19 + 20)

and for making code easier to read:

list_of lists = [[1, 2, 3], [4, 5 6], [7, 8 9]]

easier_to_read_list_of lists = [[1, 2, 3],
[4, 5, 6],
[7, 8 9] 1]

You can also use a backdlash to indicate that a statement continues onto the next line,
although we rarely do this:

two_plus_three = 2 +\
3

One conseguence of whitespace formatting is that it can be hard to copy and paste code
into the Python shell. For example, if you tried to paste the code:

for i in[1, 2, 3, 4, 5]:

notice the blank line
print

into the ordinary Python shell, you would get a
I ndentationError: expected an indented bl ock

because the interpreter thinks the blank line signals the end of the f or loop-s block.

I Python has a magic function past e, which correctly pastes whatever is on your
clipboard, whitespace and all. This aoneis agood reason to use | Python.

M odules

Certain features of Python are not loaded by default. These include both features included
as part of the language as well as third-party features that you download yourself. In order
to use these features, youH! need toi nport the modules that contain them.

One approach isto simply import the module itself:

i mport
my_regex = re.conpile("[0-9]+", re.l)

Herer e isthe module containing functions and constants for working with regular
expressions. After thistype of i nport you can only access those functions by prefixing
them withre. .

If you already had a different r e in your code you could use an alias:

i mport as
ny_regex = regex.conpile("[0-9]+", regex.l)

You might also do thisif your module has an unwieldy name or if you—+e going to be
typing it alot. For example, when visualizing data with mat pl ot | i b, a standard
conventionis:

i mport as

If you need afew specific values from a module, you can import them explicitly and use
them without qualification:

from i mport defaultdict, Counter
| ookup = defaul tdict(int)
nmy_counter = Counter()

If you were a bad person, you could import the entire contents of a module into your
namespace, which might inadvertently overwrite variables you-ve already defined:

match = 10
from i mport * # uh oh, re has a match function
print match # "<function re. match>"

However, since you are not a bad person, you won+ ever do this.

Arithmetic

Python 2.7 uses integer division by default, sothat 5 / 2 equals 2. Almost alwaysthisis
not what we want, so we will always start our files with:

from i mport division

after which5 / 2 equals2. 5. Every code example in this book uses this new-style

division. In the handful of cases where we need integer division, we can get it with a
doubledash:5 // 2.

Functions

A function isarule for taking zero or more inputs and returning a corresponding output. In
Python, we typically define functions using def :

def doubl e(x):
"""this is where you put an optional docstring
t hat expl ains what the function does
for exanple, this function nultiplies its input by 2""'
return x * 2

Python functions are first-class, which means that we can assign them to variables and
pass them into functions just like any other arguments:

def apply_to_one(f):
"""calls the function f with 1 as its argunent"""
return f(1)

nmy_doubl e = doubl e # refers to the previously defined function
x = appl y_to_one(my_doubl e) # equal s 2

It is also easy to create short anonymous functions, or lambdas:

y = apply_to_one(lanbda x: x + 4) # equals 5

You can assign lambdas to variables, although most people will tell you that you should
just use def instead:

anot her _doubl e = [anbda x: 2 * x # don't do this
def another_double(x): return 2 * x # do this instead

Function parameters can also be given default arguments, which only need to be specified
when you want a value other than the defaullt:

def ny_print(message="ny default nessage"):
print nessage

nmy_print("hello") # prints 'hello
nmy_print() # prints 'ny default nessage

It is sometimes useful to specify arguments by name:
def subtract(a=0, b=0):
return a - b
subtract (10, 5) # returns 5

subtract (0, 5) # returns -5
subt ract (b=5) # sanme as previous

We will be creating many, many functions.

Strings

Strings can be delimited by single or double quotation marks (but the quotes have to
match):

"data science
"data science"

singl e_quoted_string
doubl e_quot ed_string

Python uses backslashes to encode specia characters. For example:

tab_string = "\t" # represents the tab character
[en(tab_string) #is 1

If you want backslashes as backslashes (which you might in Windows directory names or
In regular expressions), you can create raw stringsusingr " " :

not _tab_string = r"\t" # represents the characters '"\' and 't
 en(not _tab_string) #is 2

You can create multiline strings using triple-[double-]-quotes:

multi_line_string = """This is the first line
and this is the second line
and this is the third line"""

Exceptions

When something goes wrong, Python raises an exception. Unhandled, these will cause
your program to crash. You can handlethem usingt ry and except :

try:
print 0/ O
except ZeroDivisionError:
print "cannot divide by zero"

Although in many languages exceptions are considered bad, in Python there is no shame
in using them to make your code cleaner, and we will occasionally do so.

Lists
Probably the most fundamental data structurein Pythonisthelist. Alistissimply an

ordered collection. (It issimilar to what in other languages might be called an array, but
with some added functionality.)

integer_list =[1, 2, 3]
het erogeneous_list = ["string", 0.1, True]
list_of lists = [integer_list, heterogeneous_list, []]

list_length
list _sum

I en(integer_|ist) # equals 3
sun(integer_list) # equals 6

You can get or set the nth element of alist with square brackets:

X = range(10) #is the list [0, 1, ..., 9]

zero = x[0] # equals 0, lists are 0-indexed

one = x[1] # equals 1

nine = x[-1] # equals 9, 'Pythonic' for last elenent

ei ght = x[-2] # equals 8, 'Pythonic' for next-to-last elenent
x[0] = -1 # nowx is [-1, 1, 2, 3, ..., 9]

You can aso use square brackets to —dlicell lists:

first_three = x[:3] #[-1, 1, 2]
three_to_end = x[3:] #[3, 4, ..., 9]
one_to_four = x[1:5] #[1, 2, 3, 4]

last _three = x[-3:] #[7, 8, 9]

wi thout _first_and_last = x[1:-1] #1101, 2, ..., 8]
copy_of _x = x[:] #[-1, 1, 2, ..., 9]

[1, 2, 3] # True
0inf[1, 2, 3] # Fal se

This check involves examining the elements of the list one at a time, which means that
you probably shouldn+ use it unless you know your list is pretty small (or unlessyou
don- care how long the check takes).

It is easy to concatenate lists together:

x =11, 2, 3]
x.extend([4, 5, 6]) # x is now [1,2,3,4,5, 6]

If you don+ want to modify x you can use list addition:

[1, 2, 3]
X + [4, 5, 6] #vyis|[1l, 2, 3, 4, 5 6]; x is unchanged

More frequently we will append to lists one item at atime:

x =11, 2, 3]

X. append(0) # x is now [1, 2, 3, 0]
y = x[-1] # equals O

z = len(x) # equals 4

It is often convenient to unpack listsif you know how many elements they contain:

X, y =11, 2] #nowx is 1, yis 2

although you will get aval ueError if you don+ have the same numbers of elements on
both sides.

It-s common to use an underscore for avalue you—+e going to throw away:

oy =11 2] # nowy == 2, didn't care about the first elenent

Tuples

Tuples are listsHmmutable cousins. Pretty much anything you can do to alist that doesn+
involve modifying it, you can do to atuple. You specify atuple by using parentheses (or
nothing) instead of square brackets:

ny_list =11, 2]

ny_tuple = (1, 2)

other_tuple = 3, 4

my_list[1] = 3 # ny_list is now [1, 3]

try:
ny_tuple[1] = 3

except TypeError:
print "cannot nodify a tuple"

Tuples are a convenient way to return multiple values from functions;

def sum and_product (x, y):
return (x +y),(x *vy)

sp = sum and_product (2, 3) # equals (5, 6)
S, p = sumand_product (5, 10) # s is 15, p is 50

Tuples (and lists) can also be used for multiple assignment:

2 #nowx is 1, yis 2
Pythonic way to swap variables; nowx is 2, yis 1

<
x

Dictionaries

Another fundamental data structure is a dictionary, which associates values with keys and
allows you to quickly retrieve the value corresponding to a given key:

empty_dict = {} # Pyt honic
enpty_dict2 = dict() # |l ess Pythonic
grades = { "Joel"™ : 80, "Tinl" : 95} # dictionary literal

You can look up the value for a key using square brackets:

joel s_grade = grades["Joel "] # equal s 80

But you-! get akeyError if you ask for akey that-s not in the dictionary:

try:

kat es_grade = grades["Kate"]
except KeyError:

print "no grade for Kate!"

You can check for the existence of akey usingi n:

j oel _has_grade
kat e_has_grade

"Joel" in grades # True
"Kate" in grades # Fal se

Dictionaries have aget method that returns a default value (instead of raising an
exception) when you look up a key that-s not in the dictionary:

joels_grade = grades.get("Joel", 0) # equal s 80
kat es_grade = grades. get("Kate", 0) # equals O
no_ones_grade = grades.get("No One") # default default is None

You assign key-value pairs using the same square brackets:

grades["Tinl'] = 99 # replaces the old val ue
grades["Kate"] = 100 # adds a third entry
num students = | en(grades) # equals 3

We will frequently use dictionaries as a simple way to represent structured data:

tweet = {

"user" : "joelgrus",

"text" : "Data Science is Awmesone",

"retweet _count" : 100,

"hashtags" : ["#data", "#science", "#datascience", "#awesonme", "#yolo0"]
}

Besides looking for specific keys we can look at all of them:

tweet _keys = tweet. keys() # list of keys

tweet val ues = tweet.val ues() # list of values

tweet _itens = tweet.itens() # list of (key, value) tuples
"user" in tweet_keys # True, but uses a slowlist in

"user" in tweet # nmore Pythonic, uses faster dict in

"joelgrus" in tweet_val ues # True

Dictionary keys must be immutable; in particular, you cannot usel i st saskeys. If you
need a multipart key, you should use at upl e or figure out away to turn the key into a
string.

defaultdict

Imagine that you—e trying to count the words in a document. An obvious approach is to
create adictionary in which the keys are words and the values are counts. As you check
each word, you can increment its count if it-s already in the dictionary and add it to the
dictionary if it-s not:

word_counts = {}
for word in docunent:
if word in word_counts
word_counts[word] += 1
el se:
word_counts[word] =1

You could also use the —forgivenessis better than permissionll approach and just handle
the exception from trying to look up amissing key:

word_counts = {}
for word in docunent:

try:
word_counts[word] += 1
except KeyError
word_counts[word] = 1

A third approach isto use get , which behaves gracefully for missing keys:

word_counts = {}

for word in docunent:
previ ous_count = word_counts. get (word, 0)
wor d_count s[word] = previous_count + 1

Every one of these is dightly unwieldy, which iswhy def aul t di ct isuseful. A
def aul t di ct islike aregular dictionary, except that when you try to look up akey it

doesn contain, it first adds a value for it using a zero-argument function you provided
when you created it. In order to use def aul t di ct S, you have to import them from

col |l ecti ons.

from i mport defaul tdict
word_counts = defaul tdict(int) # int() produces O

for word in docunent:
word_counts[word] += 1

They can aso be useful with1i st or di ct or even your own functions:

dd_list = defaultdict(list) # list() produces an enpty |ist
dd_list[2].append(1l) # now dd_list contains {2: [1]}

dd_dict = defaul tdict(dict) # dict() produces an enpty dict
dd_dict["Joel"]["City"] = "Seattle" # { "Joel" : { "City" : Seattle"}}

dd_pair = defaultdict(lanbda: [0, 0])
dd_pair[2][1] =1 # now dd _pair contains {2: [0, 1]}

These will be useful when we-re using dictionaries to —ollectll results by some key and
don+ want to have to check every timeto see if the key exists yet.

Counter

A Count er turns a sequence of valuesinto adef aul t di ct (i nt) -like object mapping keys
to counts. We will primarily use it to create histograms:

from i mport Counter
¢ = Counter([O, 1, 2, 0]) # cis (basically) { 0: 2, 1: 1, 2: 1}

This gives us avery ssimple way to solve our wor d_count s problem:
wor d_counts = Counter (docunent)

A Count er instance has anost _conmmon method that is frequently useful:

print the 10 nost common words and their counts
for word, count in word_counts.nost_comon(10):
print word, count

Sets

Another data structure is set , which represents a collection of distinct elements:

s = set()

s.add(1) #sisnow{ 1}

s. add(2) #sisnow{ 1, 2}
s. add(2) #sisstill {1, 2}
x = len(s) # equals 2

y =2ins # equal s True
z=31ins # equal s Fal se

We-| use sets for two main reasons. Thefirstisthat i n isavery fast operation on sets. If
we have alarge collection of items that we want to use for a membership test, a set is more
appropriate than alist:

stopwords_list = ["a","an","at"] + hundreds_of _other_words + ["yet", "you"]
“zip" in stopwords_|ist # Fal se, but have to check every el ement

st opwor ds_set = set(stopwords_Iist)
"zip" in stopwords_set # very fast to check

The second reason is to find the distinct items in a collection:

itemlist =1, 2, 3, 1, 2, 3]

numitens = len(itemlist) # 6
itemset = set(itemlist) # {1, 2, 3}
numdistinct_itenms = |l en(itemset) # 3
distinct _itemlist = list(itemset) #11, 2, 3]

We-H use set smuch less frequently than di ct sand 1 i st S.

Control Flow

Asin most programming languages, you can perform an action conditionally usingi f :

if 1>2
nmessage = "if only 1 were greater than two "
elif 1 > 3:
nessage = "elif stands for 'else if""
el se:
nessage = "when all else fails use else (if you want to)"

You can also write aternary if-then-else on one line, which we will do occasionally:

parity = "even" if x %2 == 0 else "odd"

Python has awhi | e loop:

Xx =0

while x < 10
print x, "is |less than 10"
X += 1

although more often we-H usef or andi n:

for x in range(10):
print x, "is |less than 10"

If you need more-complex logic, you can use cont i nue and br eak:

for x in range(10):

if x == 3:

continue # go imediately to the next iteration
if x == 5:

br eak # quit the loop entirely
print x

Thiswill printo, 1, 2, and 4.

Truthiness
Booleans in Python work as in most other languages, except that they—+e capitalized:

one_is_less_than_two = 1 < 2 # equal s True
true_equal s_fal se = True == Fal se # equal s Fal se

Python uses the value None to indicate a nonexistent value. It is similar to other languages-

nul | :

X = None
print x == None # prints True, but is not Pythonic
print x i s None # prints True, and is Pythonic

Python lets you use any value where it expects a Boolean. The following are all +alsyll:

® Fal se
® None
m [] (anemptylist)

= {1} (anempty dict)

m set()
=0
m 0.0

Pretty much anything else gets treated as Tr ue. Thisallows you to easily usei f statements

to test for empty lists or empty strings or empty dictionaries or so on. It also sometimes
causes tricky bugsif you—+e not expecting this behavior:

s = sone_function_that_returns_a_string()
if s:

first_char = s[0]
el se:

first_char = ""

A simpler way of doing the sameis:

first_char = s and s[0]

since and returns its second value when the first is—truthy, |l the first value when it-s not.
Similarly, if x is either anumber or possibly None:

safe_x = x or O

Is definitely a number.

Python hasan al I function, which takes alist and returns Tr ue precisely when every
element is truthy, and an any function, which returns Tr ue when at least one element is
truthy:

all ([True, 1, { 3 1]) # True

all ([True, 1, {}]) # False, {} is falsy

any([True, 1, {}]) # True, True is truthy

all ([1) # True, no falsy elenents in the |ist

any([1) # False, no truthy elements in the |ist

The Not-So-Basics

Here we-l look at some more-advanced Python features that we- find useful for working
with data.

Sorting

Every Python list hasasort method that sortsit in place. If you don+ want to mess up
your list, you can use the sor t ed function, which returns a new list:

x = [4,1,2,3]
y = sorted(x) #1is [1,2,3,4], x is unchanged
x.sort() # now x is [1,2,3,14]

By default, sort (and sort ed) sort alist from smallest to largest based on naively
comparing the elements to one another.

If you want elements sorted from largest to smallest, you can specify ar ever se=Tr ue

parameter. And instead of comparing the elements themselves, you can compare the
results of afunction that you specify with key:

sort the list by absolute value fromlargest to snall est
X = sorted([-4,1,-2,3], key=abs, reverse=True) # is [-4,3,-2,1]

sort the words and counts from hi ghest count to | owest
wc = sorted(word_counts.itens(),
key=l anbda (word, count): count,
reverse=True)

List Comprehensions

Frequently, you- want to transform alist into another list, by choosing only certain
elements, or by transforming elements, or both. The Pythonic way of doing thisislist
comprehensions.

even_nunbers = [x for x in range(5) if x %2 == 0] # [0, 2, 4]
squar es =[x * x for x in range(5)] # [0, 1, 4, 9, 16]
even_squares = [x * x for x in even_nunbers] # [0, 4, 16]

You can similarly turn listsinto dictionaries or sets:

o x * x for x in range(5) }
* x for x in[1, -1] }

squar e_di ct

#{ 0:0, 1:1, 2:4, 3:9, 4:16 }
squar e_set #{ 1}

:{X
:{X

If you don+ need the value from the list, it-s conventional to use an underscore as the
variable:

zeroes = [0 for _ in even_nunbers] # has the same | ength as even_nunbers
A list comprehension can include multiplef or s:

pairs = [(X, V)
for x in range(10)
for y in range(10)] # 100 pairs (0,0) (0,1) ... (9,8), (9,9

and later f or S can use the results of earlier ones:

increasing_pairs = [(Xx, Y) # only pairs with x <y
for x in range(10) # range(l o, hi) equals
for y in range(x + 1, 10)] # [lo, lo+1, ..., hi - 1]

We will use list comprehensions alot.

Generatorsand Iterators

A problem with listsis that they can easily grow very big. r ange(1000000) creates an
actual list of 1 million elements. If you only need to deal with them one at atime, this can
be a huge source of inefficiency (or of running out of memory). If you potentially only
need the first few values, then calculating them all is a waste.

A generator is something that you can iterate over (for us, usually using f or) but whose
values are produced only as needed (lazly).

One way to create generators is with functions and the yi el d operator:

def lazy_range(n):
"""a lazy version of range"""
i =0
while i < n:
yield i
i +=1

The following loop will consume theyi el ded values one at atime until none are | eft:

for i in lazy_range(10):
do_sonet hi ng_wi th(i)

(Python actually comeswith al azy_r ange function called xr ange, and in Python 3, r ange
itself islazy.) This means you could even create an infinite sequence:
def natural _nunbers():
"""returns 1, 2, 3, ..."""
n=1
whil e True:

yield n
n+=1

although you probably shouldn iterate over it without using some kind of br eak logic.

TIP

The flip side of laziness is that you can only iterate through a generator once. If you need to iterate through
something multiple times, youd! need to either recreate the generator each time or use alist.

A second way to create generatorsis by using f or comprehensions wrapped in
parentheses:

| azy_evens_below 20 = (i for i in lazy_range(20) if i %2 == 0)

Recall also that every di ct hasanit ems() method that returns alist of its key-value pairs.
More frequently wel usetheiteritens() method, which lazily yi el dsthe key-value
pairs one at atime as we iterate over it.

Randomness

Aswe learn data science, we will frequently need to generate random numbers, which we
can do with the r andommodule:

i mport

four_uni formrandons = [random randomn() for

in range(4)]

[0.8444218515250481, # random randon{) produces nunbers

0. 7579544029403025, # uniformy between 0 and 1

0. 420571580830845, # it's the randomfunction we'll use
0. 25891675029296335] # nost often

The r andommaodule actually produces pseudorandom (that is, deterministic) numbers
based on an internal state that you can set with r andom seed if you want to get
reproducible results:

random seed(10) # set the seed to 10
print random randomn() # 0.57140259469
random seed(10) # reset the seed to 10

print random randomn() # 0.57140259469 again

We-Hl sometimes use r andom r andr ange, Which takes either 1 or 2 arguments and returns
an element chosen randomly from the corresponding r ange() :

random r andr ange(10) # choose randomly from range(10)

=[0, 1, ..., 9]
random randrange(3, 6) # choose randomly fromrange(3, 6) =

[3, 4, 5]

There are afew more methods that we+l sometimes find convenient. r andom shuffl e
randomly reorders the elements of alist:

up_to_ten = range(10)

random shuf fl e(up_to_ten)

print up_to_ten

12, 5 1, 9, 7, 3, 8, 6, 4, 0] (your results will probably be different)

If you need to randomly pick one element from alist you can use r andom choi ce:

ny_best _friend = random choice(["Alice", "Bob", "Charlie"]) # "Bob" for nme

And if you need to randomly choose a sample of elements without replacement (i.e., with
no duplicates), you can use r andom sanpl e:

lottery_numnbers
Wi nni ng_nunbers

range(60)
random sanpl e(l ottery_nunbers, 6) # [16, 36, 10, 6, 25, 9]

To choose a sample of elements with replacement (i.e., allowing duplicates), you can just
make multiple callsto r andom choi ce:

four_wth_replacenment = [random choi ce(range(10))
for _ in range(4)]
#19, 4, 4, 2]

Regular Expressions

Regular expressions provide away of searching text. They are incredibly useful but also
fairly complicated, so much so that there are entire books written about them. We will
explain their details the few times we encounter them; here are afew examples of how to
use them in Python:

i mport

print all([# all of these are true, because
not re.match("a", "cat"), # * 'cat' doesn't start with 'a'
re.search("a", "cat"), # * 'cat' has an '"a' in it
not re.search("c", "dog"), # * 'dog' doesn't have a 'c' in it
3 == len(re.split("[ab]", "carbs")), # * split onaor bto['c ,'r',"'s"]
"RRD-" ==re.sub("[0-9]", "-", "R2D2") # * replace digits with dashes

1) # prints True

Object-Oriented Programming

Like many languages, Python allows you to define classes that encapsulate data and the
functions that operate on them. We-| use them sometimes to make our code cleaner and
simpler. It-s probably simplest to explain them by constructing a heavily annotated
example.

Imagine we didn+ have the built-in Python set . Then we might want to create our own
Set class.

What behavior should our class have? Given an instance of Set , wedl need to be ableto
add itemstoit, r enove items from it, and check whether it cont ai ns a certain value. We-|
create al of these as member functions, which means we-l access them with a dot after a
Set object:

by convention, we give classes Pascal Case nanes
cl ass Set:

these are the nenmber functions
every one takes a first paraneter "self" (another convention)
that refers to the particular Set object being used

def __init__ (self, values=None):
"""This is the constructor.
It gets called when you create a new Set
You woul d use it |ike
sl = Set() # enpty set
s2 = Set([1,2,2,3]) # initialize with values"""

self.dict = {} # each instance of Set has its own dict property
which is what we'll use to track nemberships
if values is not None:
for value in val ues:
sel f.add(val ue)

def _ repr__(self):
"""this is the string representation of a Set object
if you type it at the Python pronpt or pass it to str()"""
return "Set: " + str(self.dict.keys())

we' |l represent nenbership by being a key in self.dict with value True
def add(self, value):
sel f.dict[value] = True

value is inthe Set if it's a key in the dictionary
def contains(self, value):
return value in self.dict

def renove(sel f, value):
del self.dict[val ue]

Which we could then use like:

s = Set([1,2,3])

s. add(4)

print s.contains(4) # True
s. renove(3)

print s.contains(3) # Fal se

Functional Tools

When passing functions around, sometimes we-l want to partially apply (or curry)
functions to create new functions. As a simple example, imagine that we have afunction
of two variables:

def exp(base, power):
return base ** power

and we want to use it to create a function of one variabletwo_t o_t he whose input isa
power and whose output isthe result of exp(2, power).

We can, of course, do thiswith def , but this can sometimes get unwieldy:

def two_to_the(power):
return exp(2, power)

A different approach isto usef unct ool s. parti al :

from i nport partial
two_to_the = partial (exp, 2) # is now a function of one variable
print two_to_the(3) # 8

You can also useparti al tofill inlater argumentsif you specify their names:

square_of = partial (exp, power=2)
print square_of (3) #9

It startsto get messy if you curry arguments in the middle of the function, so we-l try to
avoid doing that.

We will also occasionally use map, r educe, and fi | t er, which provide functiona
alternatives to list comprehensions:

def doubl e(x):
return 2 * x

xs = [1, 2, 3, 4]

twice_xs = [doubl e(x) for x in xs] #12, 4, 6, 8]

twi ce_xs = map(doubl e, xs) # same as above

i st_doubler = partial (nap, double) # *function* that doubles a I|ist
twice_xs = |ist_doubl er(xs) # again [2, 4, 6, 8]

You can use map with multiple-argument functions if you provide multiple lists:

def multiply(x, y): return x * vy

products = map(multiply, [1, 2], [4, 5]) #[1 * 4, 2 * 5] = [4, 10]

Similarly, fi | ter doesthework of alist-comprehensionii f:

def is_even(x):
"""True if x is even, False if x is odd"""
return x %2 == 0

x_evens = [x for x in xs if is_even(x)] #[2, 4]

x_evens = filter(is_even, xs) # same as above
list_evener = partial (filter, is_even) # *function* that filters a Iist
Xx_evens = |ist_evener(xs) # again [2, 4]

And r educe combines thefirst two elements of alist, then that result with the third, that
result with the fourth, and so on, producing a single result:
x_product = reduce(multiply, xs) #=1* 2* 3* 4 =24

I'ist_product = partial (reduce, nultiply) # *function* that reduces a list
x_product = |ist_product (xs) # again = 24

enumer ate

Not infrequently, you- want to iterate over alist and use both its elements and their
indexes:

not Pythonic

for i in range(len(docunents)):
docunent = docunents[i]
do_sonet hing(i, document)

al so not Pythonic
i =0
for docunment in docunents:

do_sonet hing(i, document)
i +=1

The Pythonic solution is enuner at e, which produces tuples (i ndex, el enent):

for i, document in enunerate(docunents):
do_sonet hing(i, document)

Similarly, if we just want the indexes:

for i in range(len(docunents)): do_sonething(i) # not Pythonic
for i, _ in enunerate(docunents): do_sonething(i) # Pyt honic

Well usethisalot.

zip and Argument Unpacking

Often we will need to zi p two or more lists together. zi p transforms multiple listsinto a
single list of tuples of corresponding elements:
listl [a", "b", "c']

list2 [1, 2, 3]
zip(listl, list2) #is [(a, 1), ("b, 2), (‘c', 3]

If the lists are different lengths, zi p stops as soon as the first list ends.

You can also —dnzipll alist using a strange trick:

pairs = [('a, 1), ('b'", 2), ('c', 3)]
letters, nunbers = zip(*pairs)

The asterisk performs argument unpacking, which uses the elements of pai rs as
individual argumentsto zi p. It ends up the same asif you-d called:

zip((ta', 1), ("b, 2), ("¢, 3))
whichreturns[('a',' b ,'¢c'), (*1','2","'3)].
You can use argument unpacking with any function:

def add(a, b): return a + b

add(1, 2) # returns 3

add([1, 2]) # TypeError!
add(*[1, 2]) # returns 3

It israre that wedl find this useful, but when we do it-s a neat trick.

args and kwargs

L et-s say we want to create a higher-order function that takes as input some function f and
returns a new function that for any input returns twice the value of f :

def doubler(f):
def g(x):
return 2 * f(x)
return g

Thisworks in some cases:

def f1(x):
return x + 1

g = doubler(f1)
print g(3) # 8 (
print g(-1) # 0 (

However, it breaks down with functions that take more than a single argument:

def f2(x, y):
return x +y

g = doubler(f2)
print g(1, 2) # TypeError: g() takes exactly 1 argunment (2 given)

What we need is away to specify afunction that takes arbitrary arguments. We can do this
with argument unpacking and a little bit of magic:

def magi c(*args, **kwargs)

print "unnanmed args:", args

print "keyword args:", kwargs
magi c(1, 2, key="word", key2="word2")
prints

unnaned args: (1, 2)
keyword args: {'key2': 'word2', 'key': 'word'}

That is, when we define afunction like this, ar gs isatuple of its unnamed arguments and
kwar gs isadi ct of its named arguments. It works the other way too, if you want to use a
l'i st (ortuple)anddict tosupply argumentsto afunction:

def other_way_magic(x, y, z):
return x +y + z

x_y_list =11, 2]
z dict ={ "z" : 3}
print other_way_magic(*x_y_list, **z dict) # 6

You could do all sorts of strange tricks with this; we will only use it to produce higher-
order functions whose inputs can accept arbitrary arguments:

def doubl er_correct (f):
"""works no matter what kind of inputs f expects"""
def g(*args, **kwargs):

"""what ever argunents g is supplied, pass themthrough to f"""
return 2 * f(*args, **kwargs)
return g

g = doubl er_correct(f2)
print g(1, 2) # 6

Welcometo DataSciencester!

This concludes new-employee orientation. Oh, and also, try not to embezzle anything.

For Further Exploration

» Thereisno shortage of Python tutorials in the world. The official oneis not a bad place
to start.

» The official IPython tutorial is not quite as good. You might be better off with their
videos and presentations. Alternatively, Wes McKinney-s Python for Data Analysis
(O-Rellly) hasarealy good | Python chapter.

Chapter 3. Visualizing Data

| believe that visualization is one of the most powerful means of achieving personal
goals.
Harvey Mackay
A fundamental part of the data scientist-s toolkit is data visualization. Although it is very
easy to create visualizations, it-s much harder to produce good ones.
There are two primary uses for data visualization:

» To explore data
= To communicate data

In this chapter, we will concentrate on building the skills that you- need to start exploring
your own data and to produce the visualizations we-| be using throughout the rest of the
book. Like most of our chapter topics, data visualization is arich field of study that
deservesits own book. Nonetheless, we- try to give you a sense of what makes for a
good visualization and what doesn.

matplotlib

A wide variety of tools exists for visualizing data. We will be using the mat pl ot 1'i b

library, which iswidely used (although sort of showing its age). If you areinterested in
producing elaborate interactive visualizations for the Web, it is likely not the right choice,
but for simple bar charts, line charts, and scatterplots, it works pretty well.

In particular, we will be using the mat pl ot I i b. pypl ot module. In its simplest use, pypl ot
maintains an internal state in which you build up avisualization step by step. Once you+e

done, you can saveit (with savefi g()) or display it (with show()).

For example, making ssimple plots (like Figure 3-1) is pretty simple:

from i mport pyplot as plt

years = [1950, 1960, 1970, 1980, 1990, 2000, 2010]
gdp = [300.2, 543.3, 1075.9, 2862.5, 5979.6, 10289.7, 14958. 3]

create a line chart, years on x-axis, gdp on y-axis

plt.plot(years, gdp, color="green', marker='0', linestyle="solid")

add atitle
plt.title("Nom nal GDP")

add a |label to the y-axis
plt.ylabel ("Billions of $")
plt.show)

16000 | | Nomlnlal GDP

14000

12000

10000

8000

Billions of $

6000

4000

2000

0 i i i
1950 1960 1970 1980

Figure 3-1. Asimple line chart

1990

2000

2010

Making plots that look publication-quality good is more complicated and beyond the
scope of this chapter. There are many ways you can customize your charts with (for
example) axis labels, line styles, and point markers. Rather than attempt a comprehensive

treatment of these options, we- just use (and call attention to) some of them in our
examples.
NOTE

Although we won+ be using much of this functionality, mat pl ot 1 i b is capable of producing complicated
plots within plots, sophisticated formatting, and interactive visualizations. Check out its documentation if
you want to go deeper than we do in this book.

Bar Charts

A bar chart is agood choice when you want to show how some quantity varies among
some discrete set of items. For instance, Figure 3-2 shows how many Academy Awards
were won by each of avariety of movies:

movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "Wst Side Story"]

numoscars = [5, 11, 3, 8, 10]

bars are by default width 0.8, so we'll add 0.1 to the left coordinates

so that each bar is centered

xs = [i + 0.1 for i, _ in enunerate(novies)]

plot bars with left x-coordinates [xs], heights [num oscars]
pl t.bar(xs, num.oscars)

plt.ylabel ("# of Acadeny Awards")
plt.title("M/ Favorite Movies")

| abel x-axis with novie nanmes at bar centers
plt.xticks([i + 0.5 for i, _ in enunerate(novies)], novies)

plt.show)

My Favorite Movies

12 . .

of Academy Awards

Annie Hall Ben-Hur Casablanca Gandhi West Side Story
Figure 3-2. A simple bar chart

A bar chart can aso be agood choice for plotting histograms of bucketed numeric values,
in order to visually explore how the values are distributed, asin Figure 3-3:

gr ades [83, 95,91, 87, 70, 0, 85, 82, 100, 67, 73, 77, Q]
decil e | anbda grade: grade // 10 * 10
hi st ogram = Counter (decil e(grade) for grade in grades)

plt.bar([x - 4 for x in histogramkeys()], # shift each bar to the left by 4
hi st ogr am val ues(), give each bar its correct height
8) give each bar a width of 8

H*

x-axis from-5 to 105,

plt.axis([-5 105, 0, 5])
y-axis fromO to 5

H*

plt.xticks([10 * i for i in range(11)]) # x-axis labels at 0, 10, ..., 100
plt.xl abel ("Decile")

plt.ylabel ("# of Students")

plt.title("Distribution of Exam1 G ades")

plt.show)

5 Distribution of Exam 1 Grades

4l |

of Students

10 20 30 40 50 60 70 80 90 100
Decile
Figure 3-3. Using a bar chart for a histogram

The third argument to pl t . bar specifies the bar width. Here we chose awidth of 8 (which
leaves a small gap between bars, since our buckets have width 10). And we shifted the bar
left by 4, so that (for example) the —80ll bar hasits left and right sides at 76 and 84, and
(hence) its center at 80.

Thecal topl t. axi s indicates that we want the x-axis to range from -5 to 105 (so that the
-6l and —200Il bars are fully shown), and that the y-axis should range from 0 to 5. And the
call toplt. xticks putsx-axislabelsat 0, 10, 20, “ , 100.

Bejudiciouswhen using pl t . axi s() . When creating bar chartsit is considered especially

bad form for your y-axis not to start at O, since thisis an easy way to mislead people
(Figure 3-4):

mentions = [500, 505]
years = [2013, 2014]

plt.bar([2012.6, 2013.6], mentions, 0.8)
plt.xticks(years)
plt.ylabel ("# of times | heard sonmeone say 'data science'")

if you don't do this, matplotlib will |abel the x-axis 0, 1
and then add a +2.013e3 off in the corner (bad matplotlib!)
plt.ticklabel _format(useXfset=Fal se)

m sl eading y-axis only shows the part above 500
plt.axis([2012.5,2014.5,499, 506])
plt.title("Look at the 'Huge' Increase!")

plt.show)

] 1 |
506 | Look at the 'Huge' Increase! |

505

504

503

502

501

of times | heard someone say 'data science’

500

499

2013 2014

Figure 3-4. A chart with a misleading y-axis

In Figure 3-5, we use more-sensible axes, and it looks far less impressive:

plt.axis([2012.5,2014.5,0,550])
plt.title("Not So Huge Anynore")
plt.show()

Not So Huge Anymore

500

400 -

300

200

100

of times | heard someone say 'data science’

2013 2014
Figure 3-5. The same chart with a nonmisleading y-axis

Line Charts

Aswe saw already, we can make line chartsusing pl t . pl ot () . These are agood choice
for showing trends, asillustrated in Figure 3-6:

vari ance [1, 2, 4, 8, 16, 32, 64, 128, 256]
bi as_squared [256, 128, 64, 32, 16, 8, 4, 2, 1]
total _error [x +y for x, y in zip(variance, bias_squared)]

xs = [i for i, _ in enunerate(variance)]

we can nmake multiple calls to plt.plot
to show nultiple series on the sanme chart

plt.plot(xs, variance, 'g-', label="variance') # green solid line
plt.plot(xs, bias_squared, 'r-.', |abel="bias"2") # red dot-dashed |ine
plt.plot(xs, total _error, 'b:', label="total error') # blue dotted |ine

because we've assigned | abels to each series
we can get a legend for free

loc=9 neans "top center"

plt.legend(l oc=9)

pl t.xl abel ("nodel conplexity")

plt.title("The Bias-Variance Tradeoff")

plt.show)
300 The Bias-Variance Tradeoff
—— variance
--- bias™2
250 ----- total error
,
200L. %
.
"*_.
150 ':_t
100 |
50 b
0
0 1

model complexity
Figure 3-6. Several line charts with a legend

Scatter plots

A scatterplot is the right choice for visualizing the relationship between two paired sets of
data. For example, Figure 3-7 illustrates the relationship between the number of friends

your users have and the number of minutes they spend on the site every day:

friends = [70, 65, 72, 63, 71, 64, 60, 64, 67]
mnutes = [175, 170, 205, 120, 220, 130, 105, 145, 190]
labels = ["a'", 'b'", "¢, "d, "e, "f', 'g, "h, "i']

plt.scatter(friends, mnutes)

| abel each point
for label, friend_count, mnute_count in zip(labels, friends, mnutes):
pl t.annot at e(| abel
xy=(friend_count, mnute_count), # put the label with its point
xytext=(5, -5), # but slightly offset
text coords='of fset points")

plt.title("Daily Mnutes vs. Nunmber of Friends")
plt.xlabel ("# of friends")
plt.ylabel ("daily mnutes spent on the site")

plt.show)

240 Daily Minutes vs. Number of Friends

220

*c

IJ

o

o
T

o

!_I

oo

o
T

*a

140

daily minutes spent on the site
'_I
(=]
o

120

T
L
o

*g

100

80 i i i i i

oC

58 60 62 64 66 68 70
of friends

Figure 3-7. A scatterplot of friends and time on the site

If you—~e scattering comparable variables, you might get a misleading picture if you let

mat pl ot | i b choose the scale, asin Figure 3-8:

74

test _1_grades
test_2_ grades

[99, 90, 85, 97, 80]
[100, 85, 60, 90, 70]

plt.scatter(test_1 grades, test_2_grades)
plt.title("Axes Aren't Conparable")
plt.xl abel ("test 1 grade")

plt.ylabel ("test 2 grade")

plt.show)

110 | Axes ;Iﬁren t Comp:::rable

100

90

80 | '

test 2 grade

70} ° .

60

50 i i i i
75 80 85 90 95 100

test 1 grade

Figure 3-8. A scatterplot with uncomparable axes

If weincludeacall toplt.axi s("equal "), the plot (Figure 3-9) more accurately shows
that most of the variation occurs on test 2.

That-s enough to get you started doing visualization. We- learn much more about
visualization throughout the book.

test 2 grade

110

100

90

oo
o

70

60

50

50

60 70 80 90 100 110 120
test 1 grade

Figure 3-9. The same scatterplot with equal axes

For Further Exploration

m seaborn isbuilt on top of mat pl ot I i b and allows you to easily produce prettier (and
more complex) visualizations.

m D3,jsisadavaScript library for producing sophisticated interactive visualizations for
the web. Although it is not in Python, it is both trendy and widely used, and it is well
worth your while to be familiar withit.

m Bokehisanewer library that brings D3-style visualizations into Python.

= ggplot isaPython port of the popular R library ggpl ot 2, which iswidely used for
creating —publication qualityll charts and graphics. It-s probably most interesting if
youfe aready an avid ggpl ot 2 user, and possibly alittle opagque if you+e not.

Chapter 4. Linear Algebra

| s there anything more useless or less useful than Algebra?
Billy Connolly

Linear algebrais the branch of mathematics that deals with vector spaces. Although |
can+ hope to teach you linear algebrain a brief chapter, it underpins alarge number of
data science concepts and techniques, which means | owe it to you to at least try. What we
learn in this chapter we-| use heavily throughout the rest of the book.

Vectors

Abstractly, vectors are objects that can be added together (to form new vectors) and that
can be multiplied by scalars (i.e., numbers), also to form new vectors.

Concretely (for us), vectors are points in some finite-dimensional space. Although you
might not think of your data as vectors, they are a good way to represent numeric data.

For example, if you have the heights, weights, and ages of alarge number of people, you
can treat your data as three-dimensional vectors (hei ght, wei ght, age). If you~e
teaching a class with four exams, you can treat student grades as four-dimensional vectors
(examl, exan?, exanB, exan#).

The simplest from-scratch approach is to represent vectors as lists of numbers. A list of
three numbers corresponds to a vector in three-dimensional space, and vice versa:

hei ght _wei ght _age = [70, # inches,
170, # pounds,
40 1 # years

exanl
exan®
exanB
exanyd

grades = [95,
80,
75,
62]

#
#
#
#
One problem with this approach is that we will want to perform arithmetic on vectors.
Because Python lists arent vectors (and hence provide no facilities for vector arithmetic),
we-H need to build these arithmetic tools ourselves. So let-s start with that.

To begin with, we-H frequently need to add two vectors. Vectors add componentwise. This
means that if two vectorsv and w are the same length, their sum is just the vector whose

first elementisv[0] + w{ 0], whose second element isv[1] + w 1], and so on. (If they-re
not the same length, then we-re not allowed to add them.)

For example, adding thevectors[1, 2] and[2, 1] resultsin[1 + 2, 2 + 1] or[3, 3],
as shown in Figure 4-1.

3.5n . : . . T

3.0

2.0

2.0

1.5}

1.0

0.5}

0.0 |

-0.5L i i i I i
-1 0 1 2 3 4

Figure 4-1. Adding two vectors

We can easily implement this by zi p-ing the vectors together and using alist
comprehension to add the corresponding elements:

def vector_add(v, w:
"""adds corresponding el ements"""
return [v_i + w.i
for v_i, wi in zip(v, W]

Similarly, to subtract two vectors we just subtract corresponding elements:

def vector_subtract (v, w:
"""subtracts corresponding el enents"""
return [v_i - wli
for v_i, wi in zip(v, W]

We- also sometimes want to componentwise sum alist of vectors. That is, create a new
vector whose first element is the sum of all the first elements, whose second element is the
sum of all the second elements, and so on. The easiest way to do thisis by adding one
vector at atime:

def vector_sum(vectors):
"""suns all corresponding el ements"""

result = vectors[0] # start with the first vector
for vector in vectors[1:]: # then | oop over the others
result = vector_add(result, vector) # and add themto the result

return result

If you think about it, we are just r educe-ing the list of vectors using vect or _add, which
means we can rewrite this more briefly using higher-order functions:

def vector_sum(vectors):
return reduce(vector_add, vectors)

or even.

vector_sum = partial (reduce, vector_add)

although thislast oneis probably more clever than helpful.

We-H also need to be able to multiply a vector by a scalar, which we do simply by
multiplying each element of the vector by that number:

def scalar_multiply(c, v):
"""cis a nunber, v is a vector"""
return [c * v_i for v_i in v]

This allows us to compute the componentwise means of alist of (same-sized) vectors:

def vector_nean(vectors):
"""conpute the vector whose ith elenent is the nean of the
ith elenents of the input vectors"""
n = | en(vectors)
return scalar_multiply(1l/n, vector_sun{vectors))

A less obvioustool isthe dot product. The dot product of two vectorsis the sum of their
componentwise products.

def dot (v, w:
"""v.1*wl+ ... +v.n*wn""
return sun(v_i * w.i
for v_i, wi in zip(v, W)

The dot product measures how far the vector v extends in the w direction. For example, if
w = [1, 0] thendot (v, w) isjustthefirst component of v. Another way of saying thisis
that it-s the length of the vector you-d get if you projected v onto w (Figure 4-2).

1.5

1.0

0.5+

-0.5¢}

=.5 0.0 0.5 1.0 1.5 2.0

Figure 4-2. The dot product as vector projection

Using this, it-s easy to compute a vector-s sum of squares:

def sum of _squares(v):
"""v.1*v1+ ... +v.n*vn""
return dot(v, v)

Which we can use to compute its magnitude (or length):

i mport

def magni tude(v):
return math. sqrt(sumof _squares(v)) # math.sqrt is square root function

2:8

We now have all the pieces we need to compute the distance between two vectors, defined

V(Vl o W1)2 + (v~ Wn)2

def squared_distance(v, w:
"tt(v_1 - wl) ** 2+ ... + (v_n - wn) ¥ 2"""
return sumof squares(vector_subtract(v, w)

def distance(v, w:

return math. sqrt(squared_di stance(v, w))

Which is possibly clearer if we writeit as (the equivalent):

def distance(v, w:
return magni tude(vector_subtract(v, w))

That should be plenty to get us started. We-H be using these functions heavily throughout
the book.

NOTE

Using lists as vectorsis great for exposition but terrible for performance.

In production code, you would want to use the NumPy library, which includes a high-performance array
classwith al sorts of arithmetic operations included.

Matrices

A matrix is atwo-dimensional collection of numbers. We will represent matricesasl i st s
of I'i sts, with each inner list having the same size and representing a row of the matrix. If
Aisamatrix, then Ali][j] isthe element in the ith row and the jth column. Per
mathematical convention, we will typically use capital lettersto represent matrices. For
example:

A=1[[1, 2, 3], # Ahas 2 rows and 3 col ums

B=1[[1 2], # B has 3 rows and 2 col ums

NOTE

In mathematics, you would usually name the first row of the matrix —row 1Il and the first column —eolumn
1.1l Because we-fe representing matrices with Python 1 i st s, which are zero-indexed, we-| call the first row
of amatrix —row Oll and the first column —eolumn O.1I

Given this list-of-lists representation, the matrix A has1 en(A) rowsand | en(A[0])
columns, which we consider its shape:

def shape(A):
num_r ows I en(A)
num col s len(A[0]) if Aelse O # nunber of elenments in first row
return numrows, numcols

If amatrix has n rows and k columns, we will refer toit asafl X k matrix. We can (and

sometimes will) think of each row of afl X Kk matrix as avector of length k, and each
column as a vector of length n:
def get_row(A, i):
return Ali] # Ali] is already the ith row
def get_colum(A, j):

return [ALi[j] # jth elenent of row A i
for Ai in A # for each row A i

We-l also want to be able to create a matrix given its shape and afunction for generating
its elements. We can do this using a nested list comprehension:

def meke_matrix(numrows, numcols, entry _fn):
"""returns a numrows X numcols matrix

whose (i,j)th entry is entry fn(i, j)"""

return [[entry_fn(i, j) # given i, create a list
for j in range(numcols)] # [entry_fn(i, 0), ...]
for i in range(numrows)] # create one list for each i

Given this function, you could make a5 O5 identity matrix (with 1s on the diagonal and
Os elsewhere) with:

def is_diagonal (i, j):

"""1's on the 'diagonal', 0's everywhere else"""
return 1 if i ==] else O

identity matrix = make_matrix(5, 5, is_diagonal)

#[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]

Matrices will be important to us for several reasons.

First, we can use a matrix to represent a data set consisting of multiple vectors, ssmply by
considering each vector as arow of the matrix. For example, if you had the heights,

weights, and ages of 1,000 people you could put them in al) 000 X 3 matrix:

data = [[70, 170, 40],
[65, 120, 26],
[77, 250, 19],
#oo.
]

Second, aswe- see later, we can usean 72 X K matrix to represent alinear function that
maps k-dimensional vectorsto n-dimensional vectors. Several of our techniques and
concepts will involve such functions.

Third, matrices can be used to represent binary relationships. In Chapter 1, we represented
the edges of a network as acollection of pairs (i, j).An aternative representation would
beto create amatrix Asuchthat Ali][j] islif nodesi and | are connected and O
otherwise.

Recall that before we had:

friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),
(4, 5), (5, 6), (5 7), (6, 8), (7, 8), (8, 9]

We could also represent this as:

user 0 1 2 3 4 5 6 7 8 9
#
friendships = [[O0, 1, 1, O, O, O, 0O, O, 0, O], # user O
[, O 1, 1, O, O, O, O, O, O], # user 1
[, 1, o, 1, o, o, 0, O, 0, O], # user 2
[0, 14, 1, O, 1, O, O, O, O, O], # user 3
[0, O, O, 1, O, 1, O, O, O, O], # user 4
[0, O, O, O, 1, O, 1, 1, O, O], # user 5
[0, O, O, Ob O, 1, O, O, 1, O], # user 6
[0, O, O, Ob O, 1, O, O, 1, O], # user 7
[0, OO0 O, Ob O, O, 1, 1, O, 1], # user 8
[0, 0,0 O, O, O, O, O, O, 1, O]] # user 9

If there are very few connections, this is a much more inefficient representation, since you
end up having to store alot of zeroes. However, with the matrix representation it is much
guicker to check whether two nodes are connectedf you just have to do a matrix lookup
instead of (potentially) inspecting every edge:

friendships[0][2] == 1 # True, 0 and 2 are friends
friendships[0][8] == 1 # False, 0 and 8 are not friends

Similarly, to find the connections a node has, you only need to inspect the column (or the
row) corresponding to that node:

friends_of _five = [i # only need
for i, is_friend in enunerate(friendships[5]) # to |ook at
if is_friend] # one row

Previously we added alist of connections to each node object to speed up this process, but
for alarge, evolving graph that would probably be too expensive and difficult to maintain.

We-H revisit matrices throughout the book.

For Further Exploration

» Linear agebraiswidely used by data scientists (frequently implicitly, and not
infrequently by people who don+ understand it). It wouldn+ be abad ideato read a
textbook. You can find several freely available online:

Linear Algebra, from UC Davis
Linear Algebra, from Saint Michael-s College

If you are feeling adventurous, Linear Algebra Done Wrong is a more advanced
introduction

» All of the machinery we built here you get for free if you use NumPy. (You get alot
more t0o.)

Chapter 5. Statistics

Facts are stubborn, but statistics are more pliable.
Mark Twain

Satistics refers to the mathematics and technigques with which we understand data. It isa
rich, enormous field, more suited to a shelf (or room) in alibrary rather than a chapter in a
book, and so our discussion will necessarily not be a deep one. Instead, I} try to teach
you just enough to be dangerous, and pique your interest just enough that you- go off and
learn more.

Describing a Single Set of Data

Through a combination of word-of-mouth and luck, DataSciencester has grown to dozens
of members, and the VP of Fundraising asks you for some sort of description of how many
friends your members have that he can include in his elevator pitches.

Using techniques from Chapter 1, you are easily able to produce this data. But now you
are faced with the problem of how to describeit.

One obvious description of any data set is simply the data itself:

num friends = [100, 49, 41, 40, 25,
... and lots nore

]

For a small enough data set this might even be the best description. But for alarger data
set, thisis unwieldy and probably opague. (Imagine staring at alist of 1 million numbers.)
For that reason we use statistics to distill and communicate relevant features of our data.

As afirst approach you put the friend counts into a histogram using Count er and
plt.bar() (Figure5-1):

friend_counts = Counter(numfriends)

Xs = range(101) # largest value is 100

ys = [friend_counts[x] for x in xs] # height is just # of friends
plt.bar(xs, ys)

plt.axis([0, 101, 0, 25])

plt.title("H stogram of Friend Counts")

plt.xl abel ("# of friends")

plt.ylabel ("# of people")

plt.show)

