K-Nearest Neighbours

Adapted from material by Ata Kaban The University of Birmingham

This section we will learn

- K-Nearest Neighbours
- Lazy and eager learning

Instance-based learning

- One way of solving tasks of approximating discrete or real valued target functions
- Have training examples: $(x_n, f(x_n)), n=1..N$.
- Key idea:
 - just store the training examples
 - when a test example is given then find the closest matches

1-Nearest neighbour:

Given a query instance x_q,

- first locate the nearest training example x_n
- then $f(x_q) := f(x_n)$
- K-Nearest neighbour:

Given a query instance x_q,

- first locate the k nearest training examples
- if discrete values target function then take vote among its k nearest neighbours else if real valued target function then take the mean of the f values of the k nearest neighbours

$$f(x \quad) := \frac{\sum f(x \quad)}{k}$$

The distance between examples

- We need a measure of distance in order to know who are the neighbours
- Assume that we have *T* attributes for the learning problem. Then one example point *x* has elements *x_t ∈ 𝔅*, *t*=1,...*T*.
- The distance between two points $x_i x_j$ is often defined as the Euclidean distance:

$$d(x_{i}, x_{j}) = \sqrt{\sum_{t=1}^{T} [x_{t} - x_{t}]^{2}}$$

Voronoi Diagram

Characteristics of Instancebased-Learning

- An instance-based learner is a *lazy-learner* and does all the work when the test example is presented. This is opposed to so-called *eager-learners*, which build a parameterised compact model of the target.
- It produces *local* approximation to the target function (*different* with each test instance)

When to consider Nearest Neighbour algorithms?

- Instances map to points in \Re^n
- Not more then say 20 attributes per instance
- Lots of training data
- Advantages:
 - Training is very fast
 - Can learn complex target functions
 - Don't lose information
- Disadvantages:
 - ? (will see them shortly...)

Training data

Number	Lines	Line types	Rectangles	Colours	Mondrian?
1	6	1	10	4	No
2	4	2	8	5	No
3	5	2	7	4	Yes
4	5	1	8	4	Yes
5	5	1	10	5	No
6	6	1	8	6	Yes
7	7	1	14	5	No

Test instance

Number	Lines	Line types	Rectangles	Colours	Mondrian?
8	7	2	9	4	

Keep data in normalised form

One way to normalise the data $a_t(x)$ to $a'_t(x)$ is

$$x_t' = \frac{x_t - x_t}{\sigma_t}$$

 $x_t = mean$ of t^{th} attributes

 $\sigma_{t} = standard$ deviation of t^{th} attribute

To ensure equal effects from each of the feature

Normalised training data

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
1	0.632	-0.632	0.327	-1.021	No
2	-1.581	1.581	-0.588	0.408	No
3	-0.474	1.581	-1.046	-1.021	Yes
4	-0.474	-0.632	-0.588	-1.021	Yes
5	-0.474	-0.632	0.327	0.408	No
6	0.632	-0.632	-0.588	1.837	Yes
7	1.739	-0.632	2.157	0.408	No

Test instance

Number	Lines	Line	Rectangles	Colours	Mondrian?	
		types				
8	1.739	1.581	-0.131	-1.021		
						12

Distances of test instance from training data

Example	Distance of test from example	Mondrian?
1	2.517	Νο
2	3.644	Νο
3	2.395	Yes
4	3.164	Yes
5	3.472	Νο
6	3.808	Yes
7	3.490	Νο

Classification

1-NN	Yes
3-NN	Yes
5-NN	No
7-NN	No

What if the target function is real valued?

The k-nearest neighbour algorithm would just calculate the mean of the k nearest neighbours

Variant of kNN: Distance-Weighted kNN

We might want to weight nearer neighbours more heavily

$$f(x_{q}) := \frac{\sum w_{i} f(x_{i})}{\sum w_{i}} \text{ where } w_{i} = \frac{1}{d(x_{q}, x_{i})^{2}}$$

Then it makes sense to use all training examples instead of just k (Stepard's method) Difficulties with k-nearest neighbour algorithms

- Have to calculate the distance of the test case from *all* training cases
- There may be irrelevant attributes amongst the attributes – curse of dimensionality

Lazy and Eager Learning

- Lazy: wait for query before generalizing
 - k-Nearest Neighbour, Case based reasoning
- Eager: generalize before seeing query
 - Radial Basis Function Networks, ID3, ...
- Does it matter?
 - Eager learner must create global approximation
 - Lazy learner can create many local approximations

Summary

K-Nearest Neighbours

Lazy and eager learning