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Motivation

@ Graph is a useful modelling tool for representing entities and their
relationships.

@ Example
> Internet
* Vertices: computers, smartphones, routers
* Edges: communication links

» Social Network:
* Vertices: users
* Edges: friendship

» Chemical molecule:
* Vertices: atoms

* Edges: chemical bonds
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Graph Mining: what kind of knowledge ?

What are the characteristics of these graphs?

Are there any interesting patterns in these graphs?

How to differentiate abnormal social network from a normal one?
@ How do these graph evolve over time?

And so on ...
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Patterns mining from graph

@ In this class, we will learn about frequent subgraph mining
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Areas where frequent graph patterns are useful

Program control flow analysis
» Detection of malware/virus

Network intrusion detection

Anomaly detection

@ Graph compression
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Graph theory refresher

e A graph G(V, E) is a structure which comprised of two set
» V is a set of vertices

» F is a set of edges

o A labelled graph G(V, E, Ly, Lg) is a graph where vertices and edges
have names.

» Ly is a set of vertex labels

» Lg is a set of edge labels

@ Labels need not be unique

» For example, labels may represent chemical elements
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Graph theory refresher [2]

@ A graph is said to be connected if there is path between every pair of
vertices

e A graph G4(V;, Ey) is a subgraph of another graph G(V, E) iff
» VsCVand E,CFE

e Two graphs G1(V1, E1) and Ga(Va, E3) are isomorphic if they are
topologically identical
» one can be transformed into the other simply by renaming vertices
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Graph Isomophism
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Subgraph Isomophism

e Given two graphs G1(V1, E1) and Ga(Va, E2) : find an isomorphism
between G2 and a subgraph of G;

@ NP-complete problem
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Frequent Subgraph Mining: Problem definition

o Given
» D: a set of undirected, labelled graphs

» o support threshold, 0 <o <1

o Goal:

» Find all connected, undirected graphs that are sub-graphs in at least
o|D| of input graphs
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Frequent subgraph mining methods

@ Apriori-based approach (in this class)

@ Pattern-growth approach
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Apriori algorithm recap

C}. = candidate itemset of size k, L, = frequent itemset of size k

1 Find frequent set Lj_q

2 Joining step
» (', is generated from joining member in Ly_4

3 Pruning step

> k-itemset which one of its (k — 1)-item(sub)set is not frequent cannot
be frequent, and should be removed

4 Repeat until Cy, is empty.
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Apriori algorithm recap

Set of transactions : { {1,2,3,4}, {2,3,4}, {2,3}, {1,2,4}, {1,2,3,4}, {2,4}}

min_support: 3
L, C, L Ly

Item Supportl ltem |Support ltem |Support ltem Support

1 |3 (1,2}3 (1,2)3 {124} |3

2 | k132 fersyz— (23,413

3 143 k143

4 5 2.3)4 (2.3)4 {1,2,3) and {1,3,4} were

o pruned as {1,3} is not

@ i @ i frequent.
(3413 (3.4}
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FSG: Frequent Subgraph Mining Algorithm

@ Proposed by Kumarochi & Karypis in 2001 and revised in 2004
Notation: k-subgraph is a subgraph with %k edges.

Init: Scan the transactions to find Ly and Lo, the set of all frequent
1-subgraphs and 2-subgraphs, together with their counts;

For(k=3; Liy—1 # 0, k++)
1 Candidates generation: C}, from the set of frequent k — 1-subgraphs

2 Candidates pruning: Requires that each of k — 1-subgraphs of the
candidate is also frequent

3 Frequency counting: Scan the database to count the occurrences of
ce Cy,

4 Lj = {c € C|c has counts no less than ¢ }

5 Return L ULy ULsU... L
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FSG: Candidates generation

@ Follows apriori algorithm by joining two frequent k-subgraph that has
common (k-1)-subgraph
» Need to check if (k-1)-subgraphs are isomorphic (time consuming)

@ To avoid that FSG uses canonical labelling to encode graph structure
into string.
» Comparing two subgraphs is just string comparison
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Canonical label of graph

@ Lexicographically largest (or smallest) string obtained by
concatenating upper triangular entries of adjacency matrix in
column-wise manner (after symmetric permutation).

@ Uniquely identifies a graph and its isomorphs

» Two isomorphic graphs will get same canonical label
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Canonical label of graph

o Canonical labelling is also difficult problem. There are [V|!

permutations to try.

@ FSG uses inherent properties of vertices that don't change across

isomorphic mappings to reduce the size of canonical label set.
> It groups vertices by degree and label and only permute within the

groups.
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FSG: subgraph joining

@ Two k-subgraphs which have (k-1)-subgraph are combined to form
(k+1)-subgraph
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FSG: subgraph joining [2]
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FSG: Candidate pruning

o Every (k-1)-subgraph must be frequent (downward closure property)

@ For all the (k-1)-subgraphs of a given k-candidate, check if downward
closure property holds

@ FSG also uses canonical labels to remove duplicate candidates

:candidates-3 1 I I—i
/

:candidates-4 I:I
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FSG: Frequency counting example

@ Subgraph isomorphism check for each candidate against each graph
transaction in database

» naive and so computationally expensive

@ FSG uses transaction identifier (TID) lists
» For each frequent subgraph, keep a list of TID that support it

e To compute frequency for GF*1
» Find intersection of TID lists of its subgraphs

» If size of intersection < minsup: prune G**+1

> Else: Subgraph isomorphism check only for graphs in the intersection
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FSG: Frequency counting

Transactions Frequent subgraphs
‘ gk1,, g, c T1 | TID(g*')={1,2,3,89}
gk1, cT2 TID(gk’lz) =4{1,3,6,9}
‘ 9h, gt c T3 ‘ Candidate
gkl = T6 ck = join(g*t,, g~1,)
gk c T8 TID(cY) < TID(gL,) N TID(g*1,)
‘ gk, gkl, © T9 ‘ U

TID(c*) < {1, 3,9}
» Perform subgraph-iso to T1, T3 and T9 with ck and determine

TID(ck)
* Note, TID lists require a lot of memory.
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