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@ We have seen how we can construct a generative classifier.

@ The generative classifier puts some assumption on the data (in our
case Gaussian assumption)

@ This lecture we will learn the counterpart of generative classifier called
discriminative classifier

@ Discriminative classifier aims to classify data directly without
modelling data distribution.
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Logistic Regression (1/3)

@ Recall from previous lecture: the point where decision changes from
class 1 to class 0 is

p(y = 1]x) = p(y = 0[x)
e Dividing both side by p(y = 0|x) and taking log, we get

=1
log p(y = 1|x)

py=0kx) "
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Logistic Regression (2/3)

@ Our decision function is then

p(y = 1|x)

fix) = log p(y = 0[x)

e We want to impose linear decision boundary on f(x) so we model it
with a linear function

f(x) = log p(y = 1|x) — wTx

p(y = 0[x)
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Logistic Regression (3/3)

@ From the above definition, it is then possible to find the probability
supporting the prediction.

@ This is done by inverting log ggzzéig = w’x to get p(y = 1|x)

@ Which turns out to be
> ply=1[x) = m-

s p(y=0x) =1 py=11x) = 1 — Tremiur

@ The function is called the logistic function/sigmoid

1
1+exp(—wTx)
function.
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Comparison between NDA and LR

NDA

Logistic Regression
o Generative

@ Discriminative

@ Models the occurrence of z by
some probability distribution
(Gaussian is the mostly used)

@ Does not try to model the
occurrence of x.

@ However, it jumps to modelling

Posterior is obtained th h
¢ rosterior is obtaine roug the posterior probability directly.

Bayes theorem.

_ _ 1
ply = 1]x) = PE=L=) p(y=11%) = o =wro
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Parameter estimation

Assuming the training data S'is i.i.d (independently and identically drawn),
the likelihood function of LR is given by:

L(0]5) = L(6](X, Y))
= p((X, ¥)|9)
= p(Y]X,0)p(X]0)

N
H p(ys = s, w)¥(1 — ply; = Llx;, w))' ¥

It's easier to work with a log-likelihood

N

L(w) = yilog p(yi = Llxi,w) + (1 — y;) log p(ys = Olx, w)
=1
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Parameter estimation:

@ Using the definition of p(y = 1|x) and p(y = 0|x) we can simplify
things a bit.

M

Lw) =" yw"x; — log(1+ &™) (1)
=1

e We would like to maximise the likelihood Eq.(1).
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First order partial derivatives

@ The point at which Eq.(1) is maximum is a saddle point (i.e., first
derivative is zero)

e We find the first order (partial) derivatives of Eq.(1) w.r.t w;.

$’L] WTXZ'
L Zm @)

i=1

o Setting Eq.(2) to zero, we find that there is no closed-form solution
(we cannot isolate w)

Ty,

ZTje eV
Zymg Zmzo
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First approach to optimisation: Newton's method

@ Also known as Newton-Raphson method.

@ The method for finding successive better approximation to the root of
a real-valued function, z: f{z) = 0.

old _ flz)
f(z)

» The update routine is given by 2™V = ¢

@ Back to our problem we want to find £'(w) = 0, the Newton's
method for our purpose is then

L'(w)
)

wiew — wold

@ But we need to find the second order partial derivative £”(w)
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A side note on calculus

@ A partial derivative of differentiable function flz;, 22, ..., z,) of
several variables is its derivative w.r.t one of those variable with the
others held constant.

@ A gradient of the function flz1, 22, ..., x,) is a vector of partial
derivatives
af @ 3
> Vf(il?l,l’g,...,l’n) = (373{13 3733];3"'7 az{l)

@ A Hessian matrix is a square matrix of second-order partial derivative

8% f 9% f 8% f
O3 Ox10x2 " Ox1 0z,
8%f 3% f i
> H— Oz 01 amg e Oxo0xy,
8%f % f 3%f
0z,011 O0x,0wy " Ox2

Jakramate Bootkrajang CS423: Data Mining 11 /19



Newton's method: Simplifying the 1st order derivatives

@ So we massage the first partial derivative a bit

0L(w) ;e
Ow = Z Yiij Z 14 6WTX1
J i=1 i=1
N N
= iz — Y p(y = 1|xi)z;
=1 i=1
N
=Y [Z/i —ply= 1\x2)} T
=1
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Newton's method: The Hessian

T.
N N oyenTx
OL(w) _ O3 izt Yistij = 2oim1 T,
Bwjﬁwk owy,

=— EN: (L+ ) e Ny, — (&) iy,

(1 4 eWTXi)2

-1
N

=— Z wrap(y = 1)x;) — zyzap(y = 1)x;)?
=1
N

= - Z zizgp(y = 11%3) (1 — p(y = 1]x;))
i—1
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Newton's method: In matrix form

w7y
=X (y —py1)
OL(w) B T
owo 7= X QX

Xisan Nx (m+1) (1's augmented) input matrix
@ y is a vector of labels

@ p; is a vector of p(y = 1|x;, w!?)

e Qis an N x N diagonal matrix with Q[7, 7] being
p(y = Lxs, w) (1 = p(y = 1|x;, w'?))
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Newton's method for optimising LR: Summary

Pseudo Code
Qw0
@ Make sure class label vector y is in {0, 1} format

© Compute p; by setting its elements to

eW TXZ'

Py = thaw) =

@ Compute diagonal matrix Q by setting its diagonal elements to
p(y = 1xgs w)(1 — p(y = 1|xi; w))
Q w? = wold + 7)(XTQX)_1XT(y _ pl)

@ Until stopping criteria is met (usually |w"® — w°4| < ¢)
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Problem with Newton's method

@ Finding the Hessian is a tedious work.
@ Further, finding the inverse of the Hessian is usually time consuming.

@ Some modifications exist, e.g., Quasi-Newton, for speeding up the
calculation of the inverse by some approximation technique.

@ Some methods even require only the first derivative, e.g, conjugate
gradient method. Cool!.
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Multiclass logistic regression

Support multiclass classification

Also known as Multinomial logistic regression

The posterior probability is modelled by the softmax function

T
exp(w,, x
p(y = kjx) = [((71@)

exp(ijx)
=1

@ Here, wy is the weight vector corresponding to class k.
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Multiclass logistic regression

@ The maximum likelihood estimate of wy, is obtained by maximising
the data log-likelihood.

N K exp(wkai)
o) = 33 = 2P
=1 k=1 > exp(w X;)
j=1
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@ We learn another way to construct a classifier.

@ The classifier is called discriminative classifier.

Since it focuses on separating the data not modelling data generation.

@ One widely used classifier of this type is the Logistic Regression.

Optimising the parameter of the logistic regression can be done using
numerical method, such as the Newton's method.
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