
Association Rules Mining

Jakramate Bootkrajang

10 Aug 2014

Jakramate Bootkrajang

Association Rules Mining



Outlines

Basic Concept

Apriori Algorithm

Jakramate Bootkrajang

Association Rules Mining



Assoc. Rule: Introduction

In this chapter we will study basket data.

A basket is a collection of items purchased in a
single transaction.
We’d like to find interesting association between
items.

We want to know what items are usually purchased together.

Once we know it we can exploit such knowledge
in our marketing strategy.

Jakramate Bootkrajang

Association Rules Mining



One example of basket data

Jakramate Bootkrajang

Association Rules Mining



Our data

Our example DB has 20 records (baskets) of
supermarket transactions, from a supermarket
that only sells 9 things.

In reality, one month in a large supermarket with
five stores spread around a reasonably sized city
might easily yield a DB of 20,000,000 baskets,
each containing a set of products from a pool of
around 1,000.

Jakramate Bootkrajang

Association Rules Mining



An association rule

A ‘rule’ is something like this:

If a basket contains apples and cheese, then it
also contains beer

Any such rule has two associated measures:
1. Confidence – when the ‘if’ part is true, how often is the ‘then’

bit true? This is the same as accuracy.
2. Support – how much of the database contains the ‘if’ part?

Jakramate Bootkrajang

Association Rules Mining



A rule from our example basket data

What is the confidence and support of:

If a basket contains beer and cheese, then it also
contains honey

2/20 of the records contain both beer and
cheese, so support is 10%

Of these 2, 1 contains honey, so confidence is
50%

Jakramate Bootkrajang

Association Rules Mining



Interesting/Useful rules

Statistically, anything that is interesting is something that
happens significantly more than you would expect by chance.

For example, basic statistical analysis of basket data may
show that 10% of baskets contain bread, and 4% of baskets
contain washing-up powder

So if you choose a basket at random

There is a probability of 0.1 that it contains bread.
There is a probability of 0.04 that it contains washing-up
powder.

Jakramate Bootkrajang

Association Rules Mining



Bread and Washing-up powder

What is the probability of a basket containing both bread and
washing-up powder?

If these two things are independent, chance is
0.1× 0.04 = 0.004

That is, we would expect 0.4% of baskets to contain both
bread and washing up powder

Jakramate Bootkrajang

Association Rules Mining



Interesting means Surprising

We therefore have a prior expectation that just 4 in 1,000
baskets should contain both bread and washing up powder.

If we investigate, and discover that really it is 20 in 1,000
baskets, then we will be very surprised. It tells us that:

Something is going on in shoppers minds: bread and
washing-up powder are connected in some way.

There may be ways to exploit this discovery... HOW?

Jakramate Bootkrajang

Association Rules Mining



Finding surprising rules

So what is the most surprising rule in this database?

This would be a rule whose confidence is more different from
its expected confidence than any others.

Moreover, it also has to have a suitable level of support.

Jakramate Bootkrajang

Association Rules Mining



The same basket

Jakramate Bootkrajang

Association Rules Mining



Here are some interesting rules in our mini DB

If a basket contains glue, then it also contains either beer or
eggs

confidence: 100% ; support 25%

If a basket contains apples and dates, then it also contains
honey

confidence 100% ; support 20%

Jakramate Bootkrajang

Association Rules Mining



The Apriori algorithm

A simple, fast, and very good algorithm at finding interesting
rules.

It is used a lot in the R&D departments of retailers in the
industry.

Invented by Rakesh Agrawal and Ramakrishnan Srikant.
(Their paper is on the web)

Jakramate Bootkrajang

Association Rules Mining



Finding rules in two steps

1. Find all itemsets with a specified minimal support.
An itemset is just a specific set of items, e.g. apples, cheese.
The Apriori algorithm can efficiently find all itemsets whose
coverage is above a given threshold.

2. Use these itemsets to help generate intereresting rules.
Having done stage 1, we have considerably narrowed down the
possibilities, and can do reasonably fast processing of the large
itemsets to generate candidate rules.

Jakramate Bootkrajang

Association Rules Mining



Terminology 1

K-itemset : a set of k items.

{beer, cheese, eggs} is a 3-itemset
{cheese} is a 1-itemset
{honey, ice-cream} is a 2-itemset

Support: an itemset has support s% if s% of the records in
the DB contain that itemset.

Minimum support: the Apriori algorithm starts with the
specification of a minimum level of support, and will focus on
itemsets with this level or above.

Jakramate Bootkrajang

Association Rules Mining



Terminology 2

Large itemset: An itemset whose support is at least minimum
support. (also called frequent itemset)

Lk : the set of all large k-itemsets in the DB.

Ck : a set of candidate large k-itemsets. In the apriori
algorithm will generates this set, which contains all the
k-itemsets that might be large, and will then eventually
generate the Lk set.

Jakramate Bootkrajang

Association Rules Mining



Terminology 3

Sets:

Let A be a set, A = {cat, dog}
Let B be a set, B = {dog, eel, rat}
Let C = {eel, rat}

? ‘A ∪ B’ means A union B. So A ∪ B = {cat, dog, eel. rat}
? When X is a subset of Y,

? Y − X means the set of things in Y which are not in X.

? So, B − C = {dog}

Jakramate Bootkrajang

Association Rules Mining



The basket revisited (initials are used instead of full names)

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

3. { Ck = apriori-gen(Lk−1)

4. For each c in Ck , initialise c.count to zero

5. For all records r in the DB

6. {Cr = subset(Ck , r); For each c in Cr , c.count++ }
7. Set Lk := all c in Ck whose count ≥ minsup

8. } // end, and return all of the Lk sets.

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

To start off, we find all of the large 1-itemsets. This is done
by a basic scan of the DB. We take each item in turn, and
count the number of times that item appears in a basket. In
our running example, suppose minimum support was 30%,
then the only large 1-itemsets would be: {a}, {b}, {c}, {d}
and {f}. So we get L1 = {{a}, {b}, {c}, {d}, {f}}

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

We already have L1. This next bit just means that the
remainder of the algorithm generates L2, L3 , and so on until
we get to an Lk that’s empty.

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

3. { Ck = apriori-gen(Lk−1)

Given the large (k-1)-itemsets, this step generates some
candidate k-itemsets that might be large. Because of how
apriori-gen works, the set Ck is guaranteed to contain all
the large k-itemsets, but also contains some that will turn out
not to be ‘large’.

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

3. { Ck = apriori-gen(Lk−1)

4. For each c in Ck , initialise c.count to zero

We will find the support for each of the candidate k-itemsets
in Ck , by counting how many times each of these itemsets
appears in the DB. this step starts us off by initialising these
counts to zero.

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

3. { Ck = apriori-gen(Lk−1)

4. For each c in Ck , initialise c.count to zero

5. For all records r in the DB

6. {Cr = subset(Ck , r); For each c in Cr , c.count++ }

We now take each record r in the DB and do this: get all the
candidate k-itemsets from Ck that are contained in r. For
each of these, update its count.

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

3. { Ck = apriori-gen(Lk−1)

4. For each c in Ck , initialise c.count to zero

5. For all records r in the DB

6. {Cr = subset(Ck , r); For each c in Cr , c.count++ }
7. Set Lk := all c in Ck whose count ≥ minsup

Now we have the count for every candidate. Those whose
count is big enough are valid large itemsets of the right size.
We therefore now have Lk , We now go back into the for loop
of line 2 and start working towards finding Lk+1

Jakramate Bootkrajang

Association Rules Mining



The Apriori Algorithm explained

1. Find all large 1-itemsets

2. For (k = 2 ; while Lk−1 is non-empty; k++)

3. { Ck = apriori-gen(Lk−1)

4. For each c in Ck , initialise c.count to zero

5. For all records r in the DB

6. {Cr = subset(Ck , r); For each c in Cr , c.count++ }
7. Set Lk := all c in Ck whose count ≥ minsup

8. } // end, and return all of the Lk sets.

We finish at the point where we get an empty Lk . The
algorithm returns all of the (non-empty) Lk sets, which gives
us an excellent start in finding interesting rules (although the
large itemsets themselves will usually be very interesting and
useful.

Jakramate Bootkrajang

Association Rules Mining



apriori-gen explained

Suppose we have worked out that the large 2-itemsets are:

L2 = {{milk, noodles}, {milk, shoes}, {noodles, wine}}
apriori-gen now generates 3-itemsets that all may be large.

An obvious way to do this would be to generate all of the
possible 3-itemsets that you can make from {milk, noodles,
shoes, wine}.
But this would include, for example, {milk, shoes, wine}.
Now, if this really was a large 3-itemset, that would mean the
number of records containing all three is ≥ minsup;

This means it would have to be true that the number of
records containing {shoes, wine} is ≥ minsup. But, it can’t
be, because this is not one of the large 2-itemsets.

Jakramate Bootkrajang

Association Rules Mining



apriori-gen: the join step

apriori-gen is clever in generating not too many candidate
large itemsets, but making sure to not lose any that do turn
out to be large.

To explain it, we assume that is always an ordering of the
items, e.g., alphabetical order, and that the data structures
used always keep members of a set in this order. a < b will
mean that a comes before b in alphabetical order.

Suppose we have Lk and wish to generate Ck+1

First we take every distinct pair of sets in Lk

{a1, a2, . . . , ak} and {b1, b2, . . . , bk}, and do this:

in all cases where {a1, a2, . . . , ak−1} = {b1, b2, . . . , bk−1}, and
ak < bk , {a1, a2, . . . , ak , bk} is a candidate (k+1)-itemset.

Jakramate Bootkrajang

Association Rules Mining



An illustration of the join step

Suppose the 2-itemsets are: L2 = {{milk, noodles}, {milk,
shoes}, {noodles, wine},{noodles, peas}, {noodles, shoes}}
The pairs that satisfy: {a1, a2, . . . ak−1} = {b1, b2, . . . , bk−1},
and ak < bk , are:

{milk, noodles} and {milk, shoes}
{noodles, peas} and {noodles, wine}
{noodles, peas} and {noodles, shoes}
{noodles, wine} and {noodles, shoes}

So the candidate 3-itemsets are: {milk, noodles, shoes},
{noodles, peas, wine} {noodles, peas, shoes}, {noodles, wine,
shoes}

Jakramate Bootkrajang

Association Rules Mining



apriori-gen: the pruning step (1/2)

Now we have some candidate k+1 itemsets, and are
guaranteed to have all of the ones that possibly could be large

But we have the chance to maybe prune out some more
before we enter the next stage of Apriori that counts their
support (line 5-7).

In the prune step, we take the candidate k+1 itemsets we
have, and remove any for which some k-subset of it is not a
large k-itemset.

Such could not possibly be a large k+1 itemset. (Apriori
property)

Jakramate Bootkrajang

Association Rules Mining



apriori-gen: the pruning step (2/2)

In the current example, we have
- L2 = {{milk, noodles},{milk, shoes},{noodles, wine},
{noodles, peas},{noodles, shoes}}

- And candidate k+1 itemsets so far: {milk, noodles, shoes},
{noodles, peas, wine},{noodles, peas, shoes},
{noodles, wine, shoes}
Now,

{peas, wine} is not a 2-itemset, so {noodles,peas,wine} is
pruned.
{peas,shoes} is not a 2-itemset, so {noodles,peas,shoes} is
pruned
{wine,shoes} is not a 2-itemset, so {noodles,wine,shoes} is
pruned.

After all of these we finally have
C3 = {{milk, noodles, shoes}}

Jakramate Bootkrajang

Association Rules Mining



Making a rule (1/3)

The Apriori algorithm finds interesting (i.e. frequent) itemsets.

For example, it may find that {apples, bananas, milk} has
support 30% — so 30% of transactions contain each of these
three things.

We can invent several potential rules, e.g.:

IF basket contains apples and bananas, THEN it also contains
milk.

Suppose support of {apples, bananas} is 40%; what is the
confidence of this rule?

Jakramate Bootkrajang

Association Rules Mining



Making a rule (2/3)

The confidence of a rule ‘IF A THEN B’ is:
support(A ∪ B) / support(A).
Suppose itemset A = {beer, cheese, eggs} has 30% support in
the DB {beer, cheese} has 40%, {beer, eggs} has 30%,
{cheese, eggs} has 50%, and each of beer, cheese, and eggs
alone has 50% support.
What is the confidence of:
IF basket contains Beer and Cheese, THEN basket also
contains Eggs?
It’s 30/40 = 0.75; this rule has 75% confidence.
What is the confidence of:
IF basket contains Beer, THEN basket also contains Cheese
and Eggs ?
It is 30/50 = 0.6; so this rule has 60% confidence.

Jakramate Bootkrajang

Association Rules Mining



Making a rule (3/3)

If the following rule has confidence c: If A then B

And if support(A) = 2 * support(B),

What can be said about the confidence of: If B then A

Confidence c is support(A ∪ B) / support(A)

= support(A ∪ B) / 2 * support(B)

Let d be the confidence of “If B then A”.

d = support(A ∪ B) / support(B) – Clearly, d = 2c

Jakramate Bootkrajang

Association Rules Mining



Summary

We studied the Apriori algorithm for efficiently finding
frequent large itemsets in large DBs.

We learned the associated terminologies (support, confidence,
k-itemset, large itemset).

We learned how to construct rules from the frequent itemsets
found.

We worked out the confidence of a rule based on the support
of its itemsets.

Jakramate Bootkrajang

Association Rules Mining


