What makes good ensemble?

CS789: Machine Learning and Neural Network

1. A member of the ensemble is accurate.
» An accurate classifier is one that has error rate of better than random

Ensemble methods

guessing
Jakramate Bootkrajang . <05
Department of Computer Science 2. The ensemble is composed of diverse classifiers.

Chiang Mai University

» Two classifiers are diverse if they make differrent errors on new data
points.
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Introduction More on diversity

@ To see why diversity is important, imagine there are three classifier in

@ We've seen the working of a single classifier. the ensemble hy, ho, h3

o If the three classifiers predict the same thing (not diverse)

@ We will now explore the possibility of combining outputs of those
» then when h; makes a mistake the others will too.

classifiers to make (more accurate) prediction.

@ But if the classifiers are uncorrelated (diverse)
» when h; makes a mistake, hy, h3 might not and by majority voting the
final prediction is still correct.

@ The method is call ensemble learning
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Reasons why ensemble often be more accurate [1/3] Reasons why ensemble often be more accurate [3/3]
@ Ensemble alleviates the wrong choice of choosing hypothesis space.
» That is data is not linearly-separable but linear hypothesis class is
chosen.

@ It solves statistical problem related to learning from limited number of
training data.

® Ensemble reduces the risk of choosing wrong hypothesis. @ An ensemble of linear classifiers can have non-linear decision
boundary.

Statistical

H
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‘/ Representational

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning
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Reasons why ensemble often be more accurate [2/3] How to construct an ensemble?

@ Even in the abundance of data, the problem might have several local
optima.

@ Ensemble reduces the risk of stucking in local optima. ® Ensemble of G members in general is given by:

G
Computational f(.’,U) = Z wlhl (.I')
H =1
/
@ Methods for constructing an ensemble differ in

» How to determine w;, the contribution of h;(x)

» How to get diverse set of h;(x).

* Introduce some randomness to the problem or learner
Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning
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Bagging: Example (2/3)

Boostrap Aggregating: Bagging

@ Manipulating the input data. Banana Set Banana Set
. . -
e How to get diverse h;(x) ? y
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» Sample m examples from the training set randomly, with replacement. R %ﬁ‘tfg
. . . # g ~+‘ + +
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Amit Srinet, Dave Snyder
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Bagging: Example (1/3)
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Amit Srinet, Dave Snyder Amit Srinet, Dave Snyder
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Adaptive Boosting: AdaBoost AdaBoost: reweighting

@ Place more weight on ‘difficult’ examples.

Dilespi=en if y — p,(a;)

Dt+1(z) = 7 eit o .
PUOSPOD) if y o£ hy ()

@ Instead of sampling, uses trainining set re-weighting.

(1)

Place more weight on ‘difficult’ examples.

@ « is set according to h;'s accuracy (1 — €;) on the weighted training

Classifiers are combined using

set.
G
1 1-— €t
fada(T) = § aihi(z) a; = ~1In (2)
. 2 €t
=1
@ «; is set according to h;'s accuracy on the weighted training set. s e—05 a=0
@ hi(z) is called a weak learner. » e=04,a=0.20
» =03, a=042
» e=0.1,a=1.09
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AdaBoost algorithm Effect of € on « (contribution)

Data: S = {xi,yi}f\il, xz; € X and y; € {—1, 1}
initialization: uniform weight for initial data Dy (i) = +;

fort=1...T do 3 ]
Learn a classifier hy : X — {—1, 1} that minimises training error, 4r ]
N , : 1

€5 = > iz1 De(D)[yi # hj(xi)] [
if ¢, > 0.5 then 530 1

‘ STOP; :'é [ X
else §°0 « ]
Setatzélnlz—:t; P " ]
ohti o De(i) exp(—anyihe(@i) b ]
Reweighting by Dy, (i) = =528 chty Ll ; < ]
(Z; is a normaliser making ZfV:lDtH(i) =1); ) >‘< 4
end 0 0.1 0.2 0.3 0.4 0.5

Error
end

Result: foga(2) = 3" crhi(x)
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Boosting: Example (1/2) Summary

Error: 0 Banana Set
5 *;4‘4?1 5
s NN @ Ensembles are method for obtaining highly accurate classifiers by
. Bk d Bl Vi ot ..
~ 0 ¥ ukahl e, | IR ~ 0 combining less accurate ones.
g P e g
8 |+ *}1 girEes 3 imF }"f 8 . @ This is another approach to solve non-linear problem.
PR & S N Eaa ’ ]
1 k.
ki) = @ Well known algorithms include, bagging and boosting.
10 I 10 1
-10 -5 0 5 N
Feature 1 Feature 1
AdaBoost using 20 decision trees Final output of AdaBoost with 20
with default settings decision trees
Amit Srinet, Dave Snyder
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Boosting: Example (2/2) References

Error: 0.0059487 Banana Set
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Amit Srinet, Dave Snyder
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