CS789: Machine Learning and Neural Network Ensemble methods

Jakramate Bootkrajang

Department of Computer Science Chiang Mai University

- 1. A member of the ensemble is accurate.
 - An accurate classifier is one that has error rate of better than random guessing
 - ϵ < 0.5
 </p>
- 2. The ensemble is composed of diverse classifiers.
 - Two classifiers are diverse if they make differrent errors on new data points.

	<ロ> <日> <日> <日> <日> <日	▲目▶ 目 の々で		《日》《卽》《臣》《臣》	≡ ∽へで
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	1 / 20	Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	3 / 20
Introduction			More on diversity	1	

- We've seen the working of a single classifier.
- We will now explore the possibility of combining outputs of those classifiers to make (more accurate) prediction.
- The method is call ensemble learning

- To see why diversity is important, imagine there are three classifier in the ensemble h_1, h_2, h_3
- If the three classifiers predict the same thing (not diverse)
 - then when h_1 makes a mistake the others will too.
- But if the classifiers are uncorrelated (diverse)
 - when h_1 makes a mistake, h_2 , h_3 might not and by majority voting the final prediction is still correct.

- It solves statistical problem related to learning from limited number of training data.
- Ensemble reduces the risk of choosing wrong hypothesis.

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

		<ロ> <週> <買> <買> <買>	æ	596
Jakramate Bootkrajang	CS789:	Machine Learning and Neural Networ		5 / 20
Reasons why enser	nble	often be more accurate $[2/3]$		

- Even in the abundance of data, the problem might have several local optima.
- Ensemble reduces the risk of stucking in local optima.

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

Reasons why ensemble often be more accurate [3/3]

- Ensemble alleviates the wrong choice of choosing hypothesis space.
 - That is data is not linearly-separable but linear hypothesis class is chosen.
- An ensemble of linear classifiers can have non-linear decision boundary.

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

	▲日> ▲御> ▲酒> ▲酒> → ●> →	Ð,	9 Q P
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ		7 / 20
How to construct	an ensemble?		

• Ensemble of G members in general is given by:

$$f(x) = \sum_{i=1}^{G} w_i h_i(x)$$

- Methods for constructing an ensemble differ in
 - How to determine w_i , the contribution of $h_i(x)$
 - How to get diverse set of $h_i(x)$.
 - $\star\,$ Introduce some randomness to the problem or learner

6 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

8 / 20

Boostrap Aggregating: Bagging

Bagging: Example (2/3)

- Manipulating the input data.
- How to get diverse $h_i(x)$?
 - \blacktriangleright Sample m examples from the training set randomly, with replacement.
 - Train a classifier on the *bootstrap replicate*.
 - ▶ For each boostrap, a classifier only see part of the whole data.
- What are the weights w_i 's ?
 - Classifiers are combined using identical weights.

$$f_{bagging}(x) = \sum_{i=1}^{G} h_i(x)$$

	・ロト ・四ト ・ヨト ・ヨト ・ヨ	१ १९४०			
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	9 / 20			
Bagging: Example $(1/3)$					

 Amit Srinet, Dave Snyder
 Image: CS789: Machine Learning and Neural Network
 Image: CS789: Machine Learning and Neural Network
 Image: CS789: Machine Learning and Neural Network

 Bagging: Example (3/3)

Amit Srinet, Dave Snyder

•	Þ	4	ð	Þ	•	ł	Þ	•	Ę	Þ	Ð,	4) a	. (

Amit Srinet, Dave Snyder Jakramate Bootkrajang CS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Adaptive Boosting: AdaBoost

- Instead of sampling, uses trainining set re-weighting.
- Place more weight on 'difficult' examples.
- Classifiers are combined using

$$f_{ada}(x) = \sum_{i=1}^{G} \alpha_i h_i(x)$$

- α_i is set according to h_i 's accuracy on the weighted training set.
- $h_i(x)$ is called a *weak learner*.

AdaBoost: reweighting

• Place more weight on 'difficult' examples.

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\exp(-\alpha_t)}{Z_t} & \text{if } y = h_t(x_i) \\ \frac{D_t(i)\exp(\alpha_t)}{Z_t} & \text{if } y \neq h_t(x_i) \end{cases}$$
(1)

• α_t is set according to h_t 's accuracy $(1 - \epsilon_t)$ on the weighted training set.

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} \tag{2}$$

	(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	▼ ▲ 車 → ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●			•
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	13 / 20	Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	
AdaBoost algorit	hm		Effect of ϵ on α (contribution)	

$$\begin{array}{l} \textbf{Data: } S = \{x_i, y_i\}_{i=1}^N, \, x_i \in X \text{ and } y_i \in \{-1, 1\} \\ \text{initialization: uniform weight for initial data } D_1(i) = \frac{1}{N}; \\ \textbf{for } t = 1 \dots T \textbf{ do} \\ \\ \text{Learn a classifier } h_t : X \to \{-1, 1\} \text{ that minimises training error,} \\ \epsilon_j = \sum_{i=1}^N D_t(i)[y_i \neq h_j(x_i)]; \\ \textbf{if } \epsilon_t > 0.5 \textbf{ then} \\ | STOP; \\ \textbf{else} \\ \\ \text{Reweighting by } D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}; \\ (Z_t \text{ is a normaliser making } \sum_{i=1}^N D_{t+1}(i) = 1); \\ \textbf{end} \end{array}$$

end

Result: $f_{ada}(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

Jakramate Bootkrajang

Error

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • • • • • • • •

15 / 20

decision trees

Amit Srinet, Dave Snyc	der	<
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	17 / 20
Boosting: Example	e (2/2)	

- This is another approach to solve non-linear problem.
- Well known algorithms include, bagging and boosting.

	< 回 > < 回 > < 国 > < 国 > < 国 >	1	$\mathcal{D}\mathcal{A}\mathcal{C}$
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ		19 / 20
References			

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- Ensemble Methods in Machine Learning by Tom Dietterich. web.engr.oregonstate.edu/~tgd/publications/ mcs-ensembles.pdf
- Freund; Schapire (1999). "A Short Introduction to Boosting" (PDF): introduction to AdaBoost

Amit Srinet, Dave Snyder

[bpxnc] default settings