CS789: Machine Learning and Neural Network Ensemble methods

Jakramate Bootkrajang

Department of Computer Science Chiang Mai University

Introduction

- We've seen the working of a single classifier.
- We will now explore the possibility of combining outputs of those classifiers to make (more accurate) prediction.
- The method is call ensemble learning

What makes good ensemble?

- 1. A member of the ensemble is accurate.
 - An accurate classifier is one that has error rate of better than random guessing
 - $\epsilon < 0.5$
- 2. The ensemble is composed of diverse classifiers.
 - Two classifiers are diverse if they make different errors on new data points.

More on diversity

- To see why diversity is important, imagine there are three classifier in the ensemble h_1, h_2, h_3
- If the three classifiers predict the same thing (not diverse)
 - then when h_1 makes a mistake the others will too.
- But if the classifiers are uncorrelated (diverse)
 - when h_1 makes a mistake, h_2, h_3 might not and by majority voting the final prediction is still correct.

Reasons why ensemble often be more accurate [1/3]

- It solves statistical problem related to learning from limited number of training data.
- Ensemble reduces the risk of choosing wrong hypothesis.

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

Reasons why ensemble often be more accurate [2/3]

- Even in the abundance of data, the problem might have several local optima.
- Ensemble reduces the risk of stucking in local optima.

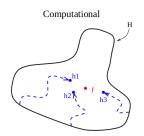


Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

Reasons why ensemble often be more accurate [3/3]

- Ensemble alleviates the wrong choice of choosing hypothesis space.
 - That is data is not linearly-separable but linear hypothesis class is chosen.
- An ensemble of linear classifiers can have non-linear decision boundary.

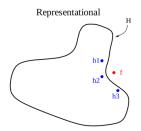


Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning

How to construct an ensemble?

• Ensemble of G members in general is given by:

$$f(x) = \sum_{i=1}^{G} w_i h_i(x)$$

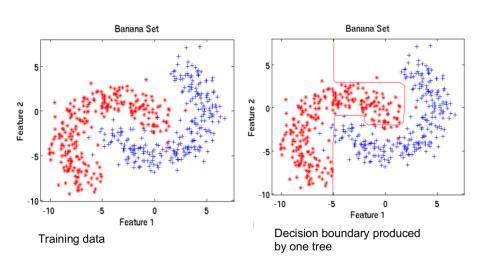
- Methods for constructing an ensemble differ in
 - ▶ How to determine w_i , the contribution of $h_i(x)$
 - ▶ How to get diverse set of $h_i(x)$.
 - ★ Introduce some randomness to the problem or learner

Boostrap Aggregating: Bagging

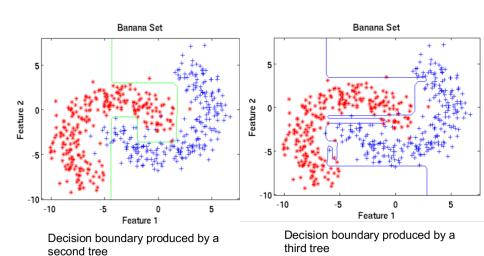
- Manipulating the input data.
- How to get diverse $h_i(x)$?
 - lacktriangleright Sample m examples from the training set randomly, with replacement.
 - ► Train a classifier on the *bootstrap replicate*.
 - ▶ For each boostrap, a classifier only see part of the whole data.
- What are the weights w_i 's?
 - Classifiers are combined using identical weights.

$$f_{bagging}(x) = \sum_{i=1}^{G} h_i(x)$$

Bagging: Example (1/3)

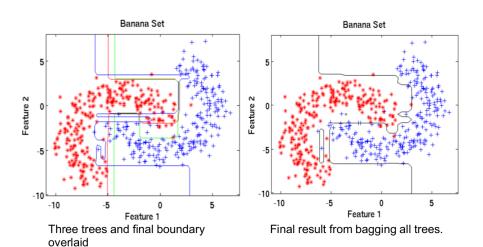


Bagging: Example (2/3)



Amit Srinet, Dave Snyder

Bagging: Example (3/3)



Adaptive Boosting: AdaBoost

- Instead of sampling, uses trainining set re-weighting.
- Place more weight on 'difficult' examples.
- Classifiers are combined using

$$f_{ada}(x) = \sum_{i=1}^{G} \alpha_i h_i(x)$$

- ullet α_i is set according to h_i 's accuracy on the weighted training set.
- $h_i(x)$ is called a weak learner.

AdaBoost algorithm

```
Data: S = \{x_i, y_i\}_{i=1}^N, x_i \in X \text{ and } y_i \in \{-1, 1\}
initialization: uniform weight for initial data D_1(i) = \frac{1}{N};
for t = 1 \dots T do
     Learn a classifier h_t: X \to \{-1, 1\} that minimises training error,
       \epsilon_i = \sum_{i=1}^N D_t(i)[y_i \neq h_i(x_i)];
     if \epsilon_{t} > 0.5 then
           STOP:
     else
           Set \alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t};
           Reweighting by D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}; (Z_t is a normaliser making \sum_{i=1}^N D_{t+1}(i) = 1);
     end
```

end

Result:
$$f_{ada}(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

AdaBoost: reweighting

Place more weight on 'difficult' examples.

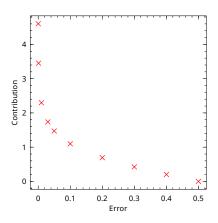
$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\exp(-\alpha_t)}{Z_t} & \text{if } y = h_t(x_i) \\ \frac{D_t(i)\exp(\alpha_t)}{Z_t} & \text{if } y \neq h_t(x_i) \end{cases}$$
 (1)

• α_t is set according to h_t 's accuracy $(1 - \epsilon_t)$ on the weighted training set.

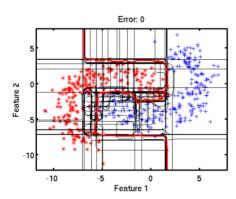
$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} \tag{2}$$

- $\epsilon = 0.5$, $\alpha = 0$
- \blacktriangleright $\epsilon=0.4$, $\alpha=0.20$
- $\epsilon = 0.3$, $\alpha = 0.42$
- $\epsilon = 0.1$, $\alpha = 1.09$

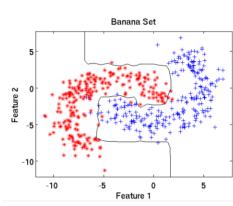
Effect of ϵ on α (contribution)



Boosting: Example (1/2)

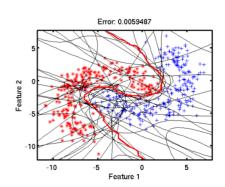


AdaBoost using 20 decision trees with default settings

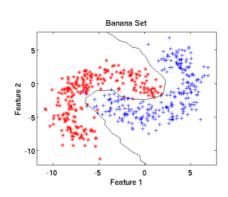


Final output of AdaBoost with 20 decision trees

Boosting: Example (2/2)



AdaBoost using 20 neural nets [bpxnc] default settings



Final output of AdaBoost with 20 neural nets

Summary

- Ensembles are method for obtaining highly accurate classifiers by combining less accurate ones.
- This is another approach to solve non-linear problem.
- Well known algorithms include, bagging and boosting.

References

- Ensemble Methods in Machine Learning by Tom Dietterich.
 web.engr.oregonstate.edu/~tgd/publications/
 mcs-ensembles.pdf
- Freund; Schapire (1999). "A Short Introduction to Boosting" (PDF): introduction to AdaBoost