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@ We've seen the working of a single classifier.

@ We will now explore the possibility of combining outputs of those
classifiers to make (more accurate) prediction.

@ The method is call ensemble learning
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What makes good ensemble?

1. A member of the ensemble is accurate.
» An accurate classifier is one that has error rate of better than random
guessing

» €< 0.5

2. The ensemble is composed of diverse classifiers.

» Two classifiers are diverse if they make differrent errors on new data
points.
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More on diversity

@ To see why diversity is important, imagine there are three classifier in
the ensemble hq, ho, hg

o If the three classifiers predict the same thing (not diverse)
» then when h; makes a mistake the others will too.

@ But if the classifiers are uncorrelated (diverse)

» when hy; makes a mistake, hs, hg might not and by majority voting the
final prediction is still correct.
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Reasons why ensemble often be more accurate [1/3]

o It solves statistical problem related to learning from limited number of
training data.

@ Ensemble reduces the risk of choosing wrong hypothesis.

Statistical

Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning
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Reasons why ensemble often be more accurate [2/3]

@ Even in the abundance of data, the problem might have several local
optima.

@ Ensemble reduces the risk of stucking in local optima.
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Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning
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Reasons why ensemble often be more accurate [3/3]

@ Ensemble alleviates the wrong choice of choosing hypothesis space.
» That is data is not linearly-separable but linear hypothesis class is
chosen.

@ An ensemble of linear classifiers can have non-linear decision
boundary.
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Figure: Credit: Thomas G. Dietterich, Ensemble Methods in Machine Learning
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How to construct an ensemble?

@ Ensemble of G members in general is given by:

G

fla) = wihi(x)

i=1
@ Methods for constructing an ensemble differ in
» How to determine w;, the contribution of h;(z)

» How to get diverse set of h;(x).

* Introduce some randomness to the problem or learner
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Boostrap Aggregating: Bagging

@ Manipulating the input data.

@ How to get diverse h;(z) ?
» Sample m examples from the training set randomly, with replacement.

» Train a classifier on the bootstrap replicate.

» For each boostrap, a classifier only see part of the whole data.

@ What are the weights w;'s 7
» Classifiers are combined using identical weights.

fbagging (33) = Z hi (x)
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Bagging: Example (1/3)
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Bagging: Example (2/3)
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Bagging: Example (3/3)
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Adaptive Boosting: AdaBoost

@ Instead of sampling, uses trainining set re-weighting.

@ Place more weight on ‘difficult’ examples.

o Classifiers are combined using
G
fada(®) =Y aihi(z)
i=1
@ «y is set according to h;'s accuracy on the weighted training set.
@ h;(x) is called a weak learner.
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AdaBoost algorithm

Data: S = {z;,y;}Y,, z; € X and y; € {-1,1}
initialization: uniform weight for initial data D1 (i) = +;
fort=1...7 do
Learn a classifier hy : X — {—1, 1} that minimises training error,

€j = iy D@y # hy(wi)] ;
if ¢, > 0.5 then

| STOP;
else

Set oy = %hl 1%:15 ;

D¢ (4) exp(—ouyihi(zs)) .
Zt !
(Z; is a normaliser making Zfil Diy1(i) =1);

end

Reweighting by D;y1(i) =

end
Result: foq.(z) = 3., arhy(x)
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AdaBoost: reweighting

@ Place more weight on ‘difficult’ examples.

Dy (i) exp(—at) - _ .
Dis1(i) = { p,(3) rb(ar) !f ¥ = halas) (1)
e ify # hy(w)

@ «y is set according to h;'s accuracy (1 — ) on the weighted training
set.
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Effect of € on a (contribution)

Jakramate Bootkrajang

Contribution

% ]
[ x i
[ X i
[ X i
[ x ]
L X i
[ X i
L X 1
[ x ]
L va
bl b b b e b e 1l
0 0.1 0.2 0.3 0.4 0.5

Error

CS789: Machine Learning an ural Networ



Boosting: Example (1/2)
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Boosting: Example (2/2)
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Summary

@ Ensembles are method for obtaining highly accurate classifiers by
combining less accurate ones.

@ This is another approach to solve non-linear problem.

@ Well known algorithms include, bagging and boosting.
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