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Introduction

Linear vs Non-linear classifier

@ Linear classifier is in the form
» wle+b

» |n words, z is a linear combination of w.
> b is the bias term.
» Can be thought of as a line separating classes.

@ Non-linear
» Can be thought of as a curve separating classes.
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Linear vs Non-linear classifier

@ One of the most widely used out-of-the-box discriminative classifier.
o Gives state-of-the-art classification performance.

@ Extends naturally to support non-linear classification tasks.
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The problem with linear machine Support Vector Machines (SVM)

@ It cannot solve linearly non-separable classification task such as the

XOR problem
@ Two key ideas
» Assuming linearly separable classes, learn separating hyperplane with
maximum margin.
® O . . . . . s
» Expand input into high-dimensional space to deal with linearly
non-separable cases (such as the XOR).
~
=81
But wait! Visualising the decision hyperplane
T
("] See what happen |f we embedded the fOUr pOintS Of XOR prob|em in ° Reca” a Iinear Classifier me + b, or more Compactly |:U):| |:x:| .
higher dimensional space (i.e. 3D space) 1 b

o For classification purpose, we want
) » wlx < 0 for negative class

» wlx > 0 for positive class.
' 2
@ For example, w = 9
» So, W Zyiorer > 0 and meomnge <0
w— 2
T2
@ L
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Visualising the decision hyperplane Many choices of separating hyperplane

T _
@ Moreover, observe that w* Zgpcen = 0.

T

@ A set of points where w* x = 0 defines the decision boundary.

e Geometrically, they are the points(vectors) which are perpendicular to
w. (dot product is zero)

w
®
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Distance of a point x from the decision hyperplane SVM's goal = maximum margin
w . : : :
According to a theorem from learning theory, from all possible linear
o decision functions the one that maximises the margin of the training set
T " will minimise the generalisation error.
P
[ ]
[ ]
w . maréin,'
® Represent x =z, + Tl (r X unit vector) . R :
. ([ J
e Since wlx, = 0, we then have wl'z = wlz, + wTrﬁ
T .. . .
@ In other words, r = “"wﬁ (note that r is invariant to scaling of w.)
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Two types of margins

e Functional margin: w”z

» Can be increased without bound by multiplying a constant to w.
’LUTCL'

[wl]

» The one that we want to maximise.

@ Geometric margin: r =

» Subject to the constraint that training examples are classified correctly.
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Maximum (geometric) margin

@ We then compute the geometric margin from functional margin
constraints

1L wlzy wla_
margin = 5wl ~ Trel?
1
=—(whzy —wlz_)
2Tl
_ 1
Tl
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Maximum margin (1/2) Maximum margin: summing up

@ Since we can scale the functional margin, we can demand the
functional margin for the nearest points to be +1 and —1 on the two
side of the decision boundary.

@ Denoting a nearest positive example by x; and a nearest negative
example by z_, we have

» wlz, =+1

» wle_ =—1
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o Given a linearly separable training set S = {z;, y; }7* ;.

@ We need to find w which maximise TRl

e Maximising m is equivalent to minimising ||w||?

@ The objective of SVM is then the following quadratic programming

1
minimise:  —||w]|?
2
subject to:
wlz; > +1 for ¥ = +1

wlz; < =1 for y; = —1

Or equivalently: y;w”z; > 1 for all i
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Support vectors

@ The training points that are nearest to the decision boundary are
called support vectors.

@ Quiz: what is the output of our decision function for these points?

[ ]
[ ]
SV sV
@ @-
® ®
[}
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Solving the quadratic programming with inequality

constraints

@ Construct & minimise the Lagrangian

1 m
L(w,a) = 5lw]? = 3 ailywTe; — 1) ey
i=1
st. «a; >0, forall i

@ The optimal w is found by taking derivatives of L w.r.t w

OL(w, o) “ o
&U—w—gazyazz—o (2)

@ Note that w are expressed as a linear combination of training points.

Jakramate Bootkrajang CS789: Machine Learning and Neural Networ 18 / 40

Solving the quadratic programming

Karush-Kuhn-Tucker (KKT) condition for optimality requires that

ai(ywlz; —1) =0

The Lagrange multipliers «; are called ‘dual variables’

@ Each training point has an associated dual variable.

@ The condition implies that only support vectors will have non-zero «;.

» as its functional output is required to be exactly +1 or —1.
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Solving the quadratic programming
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@ It is possible to find the dual of the objective function (eq.1).
» Dual problem: the new objective having dual variables as its parameters

@ Plugging eq.2 into eq.1 to obtain,
1 m m
D(a) = D) Z ozz-ozjyiyjmiij + Zai
ij=1 i=1
st. a; >0, forall i

@ Note that data enteres only in the form of dot products.
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Solving the quadratic programming

@ We can use optimation package to solve the above dual problem for
Q.

Solver ‘ Julia Package ‘ License | P ‘ socP ‘ MILP ‘
AmpINLWriterjl

Bonmin EPL X X

‘ CoinOptServices.jl

Chc Chbejl EPL X

Clp Clpjl EPL X
AmpINLWriter.jl

Couenne EPL X X
CoinOptServices.jl

CPLEX CPLEXjl Comm. X X X

ECOS ECOS,jlI GPL X X

GLPK GLPKMath... [LPIMIPI() GPL X X

Gurobi Gurobijl Comm. X X X

Ipopt Ipoptjl EPL X

KNITRO KNITROjI Comm.

MOSEK Mosek,jl Comm. X X X

NLopt NLoptjl LGPL

EES) SCSil MIT X X
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The learned SVM
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Classifying new data points

@ Once the parameter a* (or w* if primal is used) is found by solving
the quadratic optimisation on the training set of points, we can use it
to classify new unseen point.

@ Given new test point x4, its class membership is

m
H T * T
sign(w” zq) = E ;YT g
i=1

— $orp L o
= g ;YT Ty

€SV
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Important properties of SVMs

A Class 2
=06 G100
g . O /
W7 a,=0

=0 07 o0

Qa,=0.8

e
oz=1.4 T
wx+b=1
(19:0 . —O -
Class1 3~ wix+b=0

—
w1x+b=—l
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Sparse
» Only support vectors are important.

Data enters in the form of dot products.
» Ready for kernel trick.

Dual objective is convex.

However, SVM is quite sensitive to noisy data (mislabelled data)
» One such noisy data can dramatically change the decision boundary
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Non linearly separable data ? Regularised SVM (2/3)

@ This is an Li-regularisation

@ Parameter C controls the trade-off between fitting the data well and

@ We can not hope for every data being linearly separable .
P y & y sep allowing some slackness

» Indeed, many of the real-world datasets are linearly inseparable
@ Predictive performance of SVM is known to depend on C' paramater

@ This includes naturally overlapping classes (no way to be completely > Picking C usually done via cross-validation

separated)
@ And also datasets which are quite noisy o 1 5 N
> Originally linearly separable but due to some noise the observed data is minimise: 5”“’“ + CZ&
not. =1
subject to:

e What to do? yiwle; >1—¢& forall i

& >0 forall 4
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Regularised SVM (1/3) Regularised SVM (3/3)

e We will relax constraint, y;w” z; > 1 by allowing it to be less than 1

@ This is accomplished by using slack variables &; for each x; and write

>yl >1-¢; o
@ Of course, we can also derive its dual form

@ Our new objective is then

1 m m
D(a) = —3 Y ciagyiyirl e+ Y a
=1

N
1 .
minimise: §||w||2—|—C E & i,j=1 |
i—1 st. 0<q; <C, forall ¢

subject to:

yiwlxz; >1—¢ forall i
& >0 forall 4
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Non-linear classifiers Non-linear SVMs

@ Recall that the linear SVMs depends only on 27z

m m
@ What to do when data is not linearly separable? 1 T
Y P D(a) = -5 > agyiyiel v+
o First approach i,j=1 i=1
» Use non-linear model, e.g., neuron-network, NDA with full covariance st. «o; >0, forall ¢

> (problems: many parameters, local minima, experiences needed to o After the mapping, the non-linear algorithm will depend only on

trein) O(i) o)
@ Second approach L m m
» Transform data into a richer feature space (including high D(a) = —= Z aiajyiyj¢($i)T¢(Ij) + Z o
dimensioal /non-linear features), then use a linear classifier. 2 ij=1 i—1

st. a; >0, forall i

@ The dot product ¢(z;)T ¢(z;) is known as kernel function.
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@ A function that gives the dot product between the vectors in feature
Map data into a feature space where they are linearly separable space induced by the mapping ¢.

K(zi,25) = ¢(2:)T p()

@ In a matrix form, over all data, the matrix is also called Gram matrix.

K(zi,21) ... K(zi,zj) ... K(z1,2m)
R . K= | K(zj,z1) ... K(zi,z;) ... K(zi,2m)
Input space [Feature space : : :
| K(zm, 1) oo K(Tm,zj) .. K(Tm,Tm)]

@ Gram matrix, K, is positive semi-definite, i.e. aKa > 0 for all
a € R™.
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Kernels: Polynomial kernel Making kernels

@ Example: mapping x,y points in 2D input to 3D feature space.
21 ] i @ New kernels can be made from valid kernels as long as the resulting
 lz e Gram matrix is positive definite.

@ The following operations are allowed
» K(z,y) = Ki(x,y) + Ka(x,y) (addition)

The corresponding mapping ¢ is

2 ] 2
udl Y1 > K(z,y) = K i
,y) = AK1(2,y) (scaling)
P(x) = |V2mza|  o(y) = |V2y112 o
22 y2 » K(z,y) = K1(z,y) x Ka(z,9) (multiplication)
o So we get a kernel K(x,y) = ¢(x)To(y) = (xLy)? @ There is a theorem called Mercer's theorem that characterises valid
> A polynomial kernel of degree 2. kernels.
@ Using kernel trick, we may not even need to know the mapping ¢.
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Kernels: Gaussian kernel Many other kernels

@ Defined as o Linear kernel K(z,y) =27y +c

K(x,y) = eI/ e Exponential kernel K(z,y) = exp(—%)
@ This comes from writing o Sigmoid kernel K (z,y) = tanh(ax’y + c)
C_14qg4+ Hak Taylor's expansion o Histogram intersection kernel K (z,y) = > .7 ; min(z;, y;)
e Cauchy kernel K(x,y) =

1
T . . . ope . T 2
o Let a = xTy, one can see that €X' ¥ is a kernel with infinite 1+”0+73H

dimension. ) .
@ Discrete structure kernel: string kernel, tree kernel, graph kernel.

Normalising XY with o and dividing the term by el*!l and e/l to
get the Gaussian kernel.

And many more ...
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Bad kernel Applications

@ Gram matrix encodes similarities between input data points. ® Handwritten digits recogn|t.|on
» Dataset: US Postal service
@ A bad kernel would be a kernel function which gives near diagonal

Gram matrix

» 4% error was obtained

» about only 4% of the training data were SVs.

1 0 0o ... 0
0 1 0o ... 0 @ Text categorisation
1
. @ Face detection
0 0 0 1

@ DNA analysis

@ No clusters, no structure.

And many more ...
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@ Prepare the data matrix.

. . @ SVMs | li isi ies. (discriminati h
@ Select the kernel function to use, compute Gram matrix. SVMs earn finear decision boundarle.s .(dlscrlmmatlve approact )
» They pick the hyperplane that maximises the (geometric) margin.

o Execute the training algorithm using a QP solver to obtain the ; » The optimal hyperplane turns out to be a linear combination of support

values vectors.

@ Unseen data can be classified using the «; values and the support
vectors

@ Transform nonlinear problems to higher dimensional space using
kernel functions.

@ In hope for linearly-separable classes in the transformed space.

SV
) =sign(d_ awiK (z;, )
i=1
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