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Introduction

One of the most widely used out-of-the-box discriminative classifier.

Gives state-of-the-art classification performance.

Extends naturally to support non-linear classification tasks.
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Linear vs Non-linear classifier

Linear classifier is in the form
▶ wTx+ b

▶ In words, x is a linear combination of w.

▶ b is the bias term.

▶ Can be thought of as a line separating classes.

Non-linear
▶ Can be thought of as a curve separating classes.
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Linear vs Non-linear classifier
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The problem with linear machine

It cannot solve linearly non-separable classification task such as the
XOR problem
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But wait!

See what happen if we embedded the four points of XOR problem in
higher dimensional space (i.e. 3D space)
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Support Vector Machines (SVM)

Two key ideas
▶ Assuming linearly separable classes, learn separating hyperplane with

maximum margin.

▶ Expand input into high-dimensional space to deal with linearly
non-separable cases (such as the XOR).
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Visualising the decision hyperplane

Recall a linear classifier wTx+ b, or more compactly

[
w
1

]T [
x
b

]
.

For classification purpose, we want
▶ wTx < 0 for negative class

▶ wTx > 0 for positive class.

For example, w =

[
2
2

]

▶ So, wTxviolet > 0 and wTxorange < 0

w =

[
2
2

]

•

•

•
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Visualising the decision hyperplane

Moreover, observe that wTxgreen = 0.

A set of points where wTx = 0 defines the decision boundary.

Geometrically, they are the points(vectors) which are perpendicular to
w. (dot product is zero)

w

•

•

•
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Distance of a point x from the decision hyperplane

w

xr
xp

•
•

Represent x = xp + r w
||w|| (r × unit vector)

Since wTxp = 0, we then have wTx = wTxp + wT r w
||w||

In other words, r = wT x
||w|| , (note that r is invariant to scaling of w.)
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Many choices of separating hyperplane

•

•

•

•

•

•
•
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SVM’s goal = maximum margin

According to a theorem from learning theory, from all possible linear
decision functions the one that maximises the margin of the training set
will minimise the generalisation error.

•

•

•

•

•

•
•

margin
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Two types of margins

Functional margin: wTx
▶ Can be increased without bound by multiplying a constant to w.

Geometric margin: r = wT x
||w||

▶ The one that we want to maximise.

▶ Subject to the constraint that training examples are classified correctly.
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Maximum margin (1/2)

Since we can scale the functional margin, we can demand the
functional margin for the nearest points to be +1 and −1 on the two
side of the decision boundary.

Denoting a nearest positive example by x+ and a nearest negative
example by x−, we have

▶ wTx+ = +1

▶ wTx− = −1

•
•

•

•
•

•
•

margin

x+x−
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Maximum (geometric) margin

We then compute the geometric margin from functional margin
constraints

margin =
1

2
(
wTx+
||w|| − wTx−

||w|| )

=
1

2||w||(w
Tx+ − wTx−)

=
1

||w||
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Maximum margin: summing up

Given a linearly separable training set S = {xi, yi}mi=1.

We need to find w which maximise 1
||w|| .

Maximising 1
||w|| is equivalent to minimising ||w||2

The objective of SVM is then the following quadratic programming

minimise:
1

2
||w||2

subject to:

wTxi ≥ +1 for yi = +1

wTxi ≤ −1 for yi = −1

Or equivalently: yiw
Txi ≥ 1 for all i
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Support vectors

The training points that are nearest to the decision boundary are
called support vectors.

Quiz: what is the output of our decision function for these points?

•

•

•

•

•

•
•

svsv
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Solving the quadratic programming with inequality
constraints

Construct & minimise the Lagrangian

L(w,α) =
1

2
||w||2 −

m∑

i=1

αi(yw
Txi − 1) (1)

s.t. αi ≥ 0, for all i

The optimal w is found by taking derivatives of L w.r.t w

∂L(w,α)

∂w
= w −

m∑

i=1

αiyxi = 0 (2)

Note that w are expressed as a linear combination of training points.
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Solving the quadratic programming

Karush-Kuhn-Tucker (KKT) condition for optimality requires that

αi(yw
Txi − 1) = 0

The Lagrange multipliers αi are called ‘dual variables’

Each training point has an associated dual variable.

The condition implies that only support vectors will have non-zero αi.

▶ as its functional output is required to be exactly +1 or −1.
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Solving the quadratic programming

It is possible to find the dual of the objective function (eq.1).
▶ Dual problem: the new objective having dual variables as its parameters

Plugging eq.2 into eq.1 to obtain,

D(α) = −1

2

m∑

i,j=1

αiαjyiyjx
T
i xj +

m∑

i=1

αi

s.t. αi ≥ 0, for all i

Note that data enteres only in the form of dot products.
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Solving the quadratic programming

We can use optimation package to solve the above dual problem for
α.
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The learned SVM
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Classifying new data points

Once the parameter α∗ (or w∗ if primal is used) is found by solving
the quadratic optimisation on the training set of points, we can use it
to classify new unseen point.

Given new test point xq, its class membership is

sign(wTxq) =

m∑

i=1

α∗
i yix

T
i xq

=
∑

i∈SV
α∗
i yix

T
i xq
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Important properties of SVMs

Sparse
▶ Only support vectors are important.

Data enters in the form of dot products.
▶ Ready for kernel trick.

Dual objective is convex.

However, SVM is quite sensitive to noisy data (mislabelled data)
▶ One such noisy data can dramatically change the decision boundary
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Non linearly separable data ?

We can not hope for every data being linearly separable
▶ Indeed, many of the real-world datasets are linearly inseparable

This includes naturally overlapping classes (no way to be completely
separated)

And also datasets which are quite noisy
▶ Originally linearly separable but due to some noise the observed data is

not.

What to do?
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Regularised SVM (1/3)

We will relax constraint, yiw
Txi ≥ 1 by allowing it to be less than 1

This is accomplished by using slack variables ξi for each xi and write
▶ yiw

Txi ≥ 1− ξi

Our new objective is then

minimise:
1

2
||w||2 + C

N∑

i=1

ξi

subject to:

yiw
Txi ≥ 1− ξi for all i

ξi ≥ 0 for all i
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Regularised SVM (2/3)

This is an L1-regularisation

Parameter C controls the trade-off between fitting the data well and
allowing some slackness

Predictive performance of SVM is known to depend on C paramater
▶ Picking C usually done via cross-validation

minimise:
1

2
||w||2 + C

N∑

i=1

ξi

subject to:

yiw
Txi ≥ 1− ξi for all i

ξi ≥ 0 for all i
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Regularised SVM (3/3)

Of course, we can also derive its dual form

D(α) = −1

2

m∑

i,j=1

αiαjyiyjx
T
i xj +

m∑

i=1

αi

s.t. 0 ≤ αi ≤ C, for all i
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Non-linear classifiers

What to do when data is not linearly separable?

First approach
▶ Use non-linear model, e.g., neuron-network, NDA with full covariance

▶ (problems: many parameters, local minima, experiences needed to
train)

Second approach
▶ Transform data into a richer feature space (including high

dimensioal/non-linear features), then use a linear classifier.
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Learning in the feature space

Map data into a feature space where they are linearly separable
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Non-linear SVMs

Recall that the linear SVMs depends only on xTx.

D(α) = −1

2

m∑

i,j=1

αiαjyiyjx
T
i xj +

m∑

i=1

αi

s.t. αi ≥ 0, for all i

After the mapping, the non-linear algorithm will depend only on
ϕ(xi)

Tϕ(xj)

D(α) = −1

2

m∑

i,j=1

αiαjyiyjϕ(xi)
Tϕ(xj) +

m∑

i=1

αi

s.t. αi ≥ 0, for all i

The dot product ϕ(xi)
Tϕ(xj) is known as kernel function.
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Kernels

A function that gives the dot product between the vectors in feature
space induced by the mapping ϕ.

K(xi, xj) = ϕ(xi)
Tϕ(xj)

In a matrix form, over all data, the matrix is also called Gram matrix.

K =




K(x1, x1) . . . K(x1, xj) . . . K(x1, xm)
...

. . .
...

...
K(xi, x1) . . . K(xi, xj) . . . K(x1, xm)

...
...

. . .
...

K(xm, x1) . . . K(xm, xj) . . . K(xm, xm)




Gram matrix, K, is positive semi-definite, i.e. αKα ≥ 0 for all
α ∈ Rm.
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Kernels: Polynomial kernel

Example: mapping x,y points in 2D input to 3D feature space.

x =

[
x1
x2

]
y =

[
y1
y2

]

The corresponding mapping ϕ is

ϕ(x) =




x21√
2x1x2
x22


 ϕ(y) =




y21√
2y1y2
y22




So we get a kernel K(x,y) = ϕ(x)Tϕ(y) = (xTy)2

▶ A polynomial kernel of degree 2.

Using kernel trick, we may not even need to know the mapping ϕ.
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Kernels: Gaussian kernel

Defined as

K(x,y) = e−||x−y||2/σ

This comes from writing

ea = 1 + a+ · · ·+ 1

k!
ak Taylor’s expansion

Let a = xTy, one can see that ex
Ty is a kernel with infinite

dimension.

Normalising ex
Ty with σ and dividing the term by e||x|| and e||y|| to

get the Gaussian kernel.
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Making kernels

New kernels can be made from valid kernels as long as the resulting
Gram matrix is positive definite.

The following operations are allowed
▶ K(x, y) = K1(x, y) +K2(x, y) (addition)

▶ K(x, y) = λK1(x, y) (scaling)

▶ K(x, y) = K1(x, y)×K2(x, y) (multiplication)

There is a theorem called Mercer’s theorem that characterises valid
kernels.
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Many other kernels

Linear kernel K(x, y) = xT y + c

Exponential kernel K(x, y) = exp(− ||x−y||
2σ2 )

Sigmoid kernel K(x, y) = tanh(αxT y + c)

Histogram intersection kernel K(x, y) =
∑n

i=1min(xi, yi)

Cauchy kernel K(x, y) = 1

1+
||x+y||2

σ2

Discrete structure kernel: string kernel, tree kernel, graph kernel.

And many more . . .
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Bad kernel

Gram matrix encodes similarities between input data points.

A bad kernel would be a kernel function which gives near diagonal
Gram matrix




1 0 0 . . . 0
0 1 0 . . . 0

1
. . . . . . . . . . . . . . .
0 0 0 . . . 1




No clusters, no structure.
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SVMs and Kernels

Prepare the data matrix.

Select the kernel function to use, compute Gram matrix.

Execute the training algorithm using a QP solver to obtain the αi

values

Unseen data can be classified using the αi values and the support
vectors

f(x) = sign(
SV∑

i=1

αiyiK(xi, x))
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Applications

Handwritten digits recognition
▶ Dataset: US Postal service

▶ 4% error was obtained

▶ about only 4% of the training data were SVs.

Text categorisation

Face detection

DNA analysis

And many more . . .
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Summary

SVMs learn linear decision boundaries. (discriminative approach)
▶ They pick the hyperplane that maximises the (geometric) margin.

▶ The optimal hyperplane turns out to be a linear combination of support
vectors.

Transform nonlinear problems to higher dimensional space using
kernel functions.

In hope for linearly-separable classes in the transformed space.
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