CS789: Machine Learning and Neural Network Support Vector Machine

Jakramate Bootkrajang

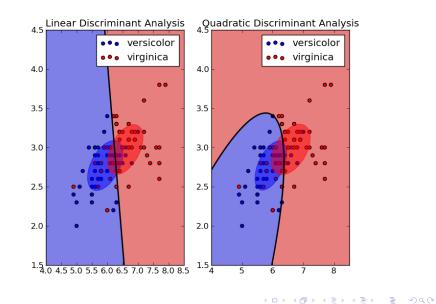
Department of Computer Science Chiang Mai University

Linear vs Non-linear classifier

- Linear classifier is in the form
 - $w^T x + b$
 - In words, x is a linear combination of w.
 - ► *b* is the bias term.
 - Can be thought of as a line separating classes.
- Non-linear
 - Can be thought of as a curve separating classes.

	◆□ ▷ ◆□ ▷ ◆臣 ▷ ◆臣 ▷ □ 臣	500
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	1 / 40
lutur du ation		
Introduction		

	(日) (四) (四) (日) (日) (日)	€.	৩৫৫
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ		3 / 40
Linear vs Non-linea	ar classifier		



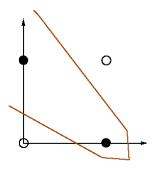
• One of the most widely used out-of-the-box discriminative classifier.

- Gives state-of-the-art classification performance.
- Extends naturally to support non-linear classification tasks.

2 / 40

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

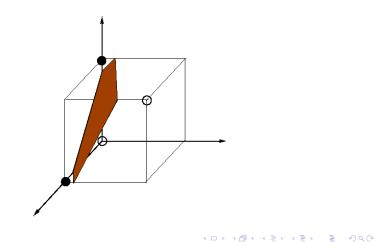
- Support Vector Machines (SVM)
- It cannot solve linearly non-separable classification task such as the XOR problem



- Two key ideas
 - Assuming linearly separable classes, learn separating hyperplane with maximum margin.
 - Expand input into high-dimensional space to deal with linearly non-separable cases (such as the XOR).

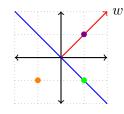
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	5 / 40
But wait!		

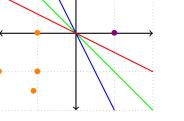
• See what happen if we embedded the four points of XOR problem in higher dimensional space (i.e. 3D space)



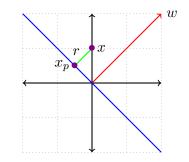
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Moreover, observe that $w^T x_{green} = 0$.
- A set of points where $w^T x = 0$ defines the decision boundary.
- Geometrically, they are the points(vectors) which are perpendicular to w. (dot product is zero)





	< □		-2	4) Q (¥
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ			9 / 40
Distance of a point	t x from the decision	hyperplane		

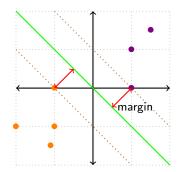


- Represent $x = x_p + r \frac{w}{||w||}$ (r × unit vector)
- Since $w^T x_p = 0$, we then have $w^T x = w^T x_p + w^T r \frac{w}{||w||}$
- In other words, $r = \frac{w^T x}{||w||}$, (note that r is invariant to scaling of w.)

 Jakramate Bootkrajang
 CS789: Machine Learning and Neural Networ
 11 / 40

 SVM's goal = maximum margin

According to a theorem from learning theory, from all possible linear decision functions the one that maximises the margin of the training set will minimise the generalisation error.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めんぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆目 ▶ ◆□ ● ● ● ●

- Functional margin: $w^T x$
 - \blacktriangleright Can be increased without bound by multiplying a constant to w.
- Geometric margin: $r = \frac{w^T x}{||w||}$
 - The one that we want to maximise.
 - Subject to the constraint that training examples are classified correctly.

• We then compute the geometric margin from functional margin constraints

$$\begin{split} \text{margin} &= \frac{1}{2} (\frac{w^T x_+}{||w||} - \frac{w^T x_-}{||w||}) \\ &= \frac{1}{2||w||} (w^T x_+ - w^T x_-) \\ &= \frac{1}{||w||} \end{split}$$

ふしゃ (山)				
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	13 / 40	Jakramate Bootkrajang	CS789: Machine Learning an
Maximum margin	(1/2)		Maximum margir	: summing up

- Given a *linearly separable* training set $S = \{x_i, y_i\}_{i=1}^m$.
- We need to find w which maximise $\frac{1}{||w||}$.
- Maximising $\frac{1}{||w||}$ is equivalent to minimising $||w||^2$
- The objective of SVM is then the following quadratic programming

minimise:
$$\frac{1}{2}||w||^2$$

subject to:

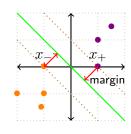
$$w^T x_i \ge +1$$
 for $y_i = +1$
 $w^T x_i \le -1$ for $y_i = -1$

Neural Networ

Or equivalently: $y_i w^T x_i \geq 1$ for all i

Jakramate Dootkrajang	CS789: Machine Learning and Neural Networ
Maximum margin	(1/2)

- Since we can scale the functional margin, we can demand the functional margin for the nearest points to be +1 and -1 on the two side of the decision boundary.
- Denoting a nearest positive example by x_+ and a nearest negative example by x_{-} , we have
 - $w^T x_+ = +1$
 - $w^T x = -1$



14 / 40

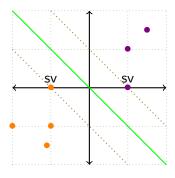
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Jakramate Bootkrajang

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

15 / 40

- The training points that are nearest to the decision boundary are called support vectors.
- Quiz: what is the output of our decision function for these points?



Jakramate Bootkrajang CS789: Machine Learning and Neural Networ 17 / 40 Solving the quadratic programming with inequality constraints

• Construct & minimise the Lagrangian

$$L(w,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \alpha_i (yw^T x_i - 1)$$
(1)
s.t. $\alpha_i \ge 0$, for all i

 $\bullet\,$ The optimal w is found by taking derivatives of L w.r.t w

$$\frac{\partial L(w,\alpha)}{\partial w} = w - \sum_{i=1}^{m} \alpha_i y x_i = 0$$
(2)

• Note that w are expressed as a linear combination of training points.

• Karush-Kuhn-Tucker (KKT) condition for optimality requires that

 $\alpha_i(yw^T x_i - 1) = 0$

- The Lagrange multipliers α_i are called 'dual variables'
- Each training point has an associated dual variable.
- The condition implies that only support vectors will have non-zero α_i .
 - as its functional output is required to be exactly +1 or -1.

	(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	ヨー
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	19 / 40
Solving the quad	ratic programming	

- It is possible to find the dual of the objective function (eq.1).
 - > Dual problem: the new objective having dual variables as its parameters
- Plugging eq.2 into eq.1 to obtain,

$$D(\alpha) = -\frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{m} \alpha_i$$

s.t. $\alpha_i \ge 0$, for all i

• Note that data enteres only in the form of dot products.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

• We can use optimation package to solve the above dual problem for α .

Solver	Julia Package	solver=	License	LP	SOCP	MILP
Bonmin	AmplNLWriter.jl	BonminNLSolver()	EPL	x		×
Boumin	CoinOptServices.jl	OsilBonminSolver()	EPL	X		X
Cbc	Cbc.jl	CbcSolver()	EPL			х
Clp	Clp.jl	ClpSolver()	EPL	х		
Couenne	AmplNLWriter.jl	CouenneNLSolver()	EPL	x		x
Couenne	CoinOptServices.jl	OsilCouenneSolver()	EPL	^		^
CPLEX	CPLEX.jl	CplexSolver()	Comm.	х	х	x
ECOS	ECOS.jI	ECOSSolver()	GPL	х	х	
GLPK	GLPKMath	<pre>GLPKSolver[LP MIP]()</pre>	GPL	х		х
Gurobi	Gurobi.jl	<pre>GurobiSolver()</pre>	Comm.	х	х	х
lpopt	lpopt.jl	<pre>IpoptSolver()</pre>	EPL	х		
KNITRO	KNITRO.jI	KnitroSolver()	Comm.			
MOSEK	Mosek.jl	MosekSolver()	Comm.	х	х	х
NLopt	NLopt.jl	NLoptSolver()	LGPL			
SCS	SCS.jl	SCSSolver()	MIT	х	х	

CS789: Machine Learning and Neural Networ

Classifying new data points

- Once the parameter α^* (or w^* if primal is used) is found by solving the quadratic optimisation on the training set of points, we can use it to classify new unseen point.
- Given new *test* point x_q , its class membership is

$$\begin{split} \mathsf{sign}(w^T x_q) &= \sum_{i=1}^m \alpha_i^* y_i x_i^T x_q \\ &= \sum_{i \in SV} \alpha_i^* y_i x_i^T x_q \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	23 / 40
Important proper	rties of SVMs	

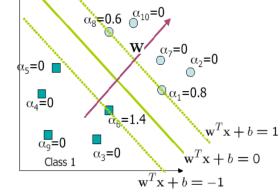
Class 2 α₈=0.6 ^{α₁₀=0} w/ α₇=0 ○ _α₂=0 α₅=0 \bigcirc 🭳 α. =0.8 α₄=0 $\mathbf{x} + b = 1$ α₉=0 α₃=0 Class 1

Sparse

- Only support vectors are important.
- Data enters in the form of dot products.
 - Ready for kernel trick.
- Dual objective is convex.
- However, SVM is quite sensitive to noisy data (mislabelled data)
 - One such noisy data can dramatically change the decision boundary

◆□ > ◆□ > ◆三 > ◆三 > 三 - シック

21 / 40



Jakramate Bootkrajang

The learned SVM

Non linearly separable data ?

- We can not hope for every data being linearly separable
 - Indeed, many of the real-world datasets are linearly inseparable
- This includes naturally overlapping classes (no way to be completely separated)
- And also datasets which are quite noisy
 - Originally linearly separable but due to some noise the observed data is not.
- What to do?

Regularised SVM (2/3)

- This is an L₁-regularisation
- Parameter C controls the trade-off between fitting the data well and allowing some slackness
- Predictive performance of SVM is known to depend on *C* paramater
 - Picking C usually done via cross-validation

minimise:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i$$

subject to:

$$y_i w^T x_i \ge 1 - \xi_i$$
 for all i
 $\xi_i \ge 0$ for all i

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで ◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ > ◆□ > Jakramate Bootkrajang CS789: Machine Learning and Neural Networ 25 / 40 Jakramate Bootkrajang CS789: Machine Learning and Neural Networ 27 / 40 Regularised SVM (1/3)

- We will relax constraint, $y_i w^T x_i \ge 1$ by allowing it to be less than 1
- This is accomplished by using slack variables ξ_i for each x_i and write ► $y_i w^T x_i > 1 - \xi_i$
- Our new objective is then

minimise:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i$$

subject to:

$$y_i w^T x_i \ge 1 - \xi_i$$
 for all i
 $\xi_i \ge 0$ for all i

CS789: Machine Learning and Neural Netwo

Jakramate Bootkraiang

• Of course, we can also derive its dual form

$$D(\alpha) = -\frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{m} \alpha_i$$

s.t. $0 < \alpha_i < C$, for all i

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

• First approach

train)

Second approach

Jakramate Bootkrajang

- Non-linear SVMs
 - Recall that the linear SVMs depends only on $x^T x$.

$$D(\alpha) = -\frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{m} \alpha_i$$

s.t. $\alpha_i \ge 0$, for all i

• After the mapping, the non-linear algorithm will depend only on $\phi(x_i)^T \phi(x_j)$

$$D(\alpha) = -\frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) + \sum_{i=1}^{m} \alpha_i$$

s.t. $\alpha_i \ge 0$, for all i

• The dot product $\phi(x_i)^T \phi(x_j)$ is known as kernel function.

▲□ ▶ ▲ ■ ▶ ▲ ■ ◆ ● ● ●		<日 > < 回 > < 回 > < 回 > < 回 > < 回	। । । • • • • • • • • • • • • • • • • •
29 / 40	Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	31 / 40
	Kernels		

• A function that gives the dot product between the vectors in feature space induced by the mapping ϕ .

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

• In a matrix form, over all data, the matrix is also called Gram matrix.

$$K = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_j) & \dots & K(x_1, x_m) \\ \vdots & \ddots & \vdots & & \vdots \\ K(x_i, x_1) & \dots & K(x_i, x_j) & \dots & K(x_1, x_m) \\ \vdots & & \vdots & \ddots & \vdots \\ K(x_m, x_1) & \dots & K(x_m, x_j) & \dots & K(x_m, x_m) \end{bmatrix}$$

• Gram matrix, K, is positive semi-definite, i.e. $\alpha K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$.

	◆□ > ◆□ > ◆臣 > ◆臣 >	1	うくで
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ		29 / 40
Learning in the fea			

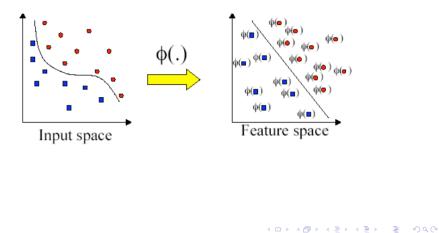
▶ Use non-linear model, e.g., neuron-network, NDA with full covariance

• (problems: many parameters, local minima, experiences needed to

 Transform data into a richer feature space (including high dimensioal/non-linear features), then use a linear classifier.

Map data into a feature space where they are linearly separable

• What to do when data is not linearly separable?



30 / 40

 \bullet Example: mapping \mathbf{x}, \mathbf{y} points in 2D input to 3D feature space.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

• The corresponding mapping ϕ is

$$\phi(\mathbf{x}) = \begin{bmatrix} x_1^2\\ \sqrt{2}x_1x_2\\ x_2^2 \end{bmatrix} \quad \phi(\mathbf{y}) = \begin{bmatrix} y_1^2\\ \sqrt{2}y_1y_2\\ y_2^2 \end{bmatrix}$$

- So we get a kernel $K(\mathbf{x},\mathbf{y})=\phi(\mathbf{x})^T\phi(\mathbf{y})=(\mathbf{x}^T\mathbf{y})^2$
 - A polynomial kernel of degree 2.
- Using kernel trick, we may not even need to know the mapping ϕ .

	<ロ> <四> <日> <日> <日> <日> <日> <日> <日> <日> <日> <日	≡ ∽ < ⊘
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	33 / 40
Kernels: Gaussian	kernel	

Defined as

$$K(\mathbf{x}, \mathbf{y}) = e^{-||\mathbf{x} - \mathbf{y}||^2 / \sigma}$$

• This comes from writing

$$e^a = 1 + a + \dots + \frac{1}{k!}a^k$$
 Taylor's expansion

- Let $a = \mathbf{x}^T \mathbf{y}$, one can see that $e^{\mathbf{x}^T \mathbf{y}}$ is a kernel with infinite dimension.
- Normalising $e^{\mathbf{x}^T \mathbf{y}}$ with σ and dividing the term by $e^{||\mathbf{x}||}$ and $e^{||\mathbf{y}||}$ to get the Gaussian kernel.

- New kernels can be made from valid kernels as long as the resulting Gram matrix is positive definite.
- The following operations are allowed

Making kernels

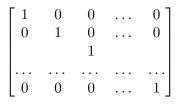
- $K(x,y) = K_1(x,y) + K_2(x,y)$ (addition)
- $K(x,y) = \lambda K_1(x,y)$ (scaling)
- $K(x,y) = K_1(x,y) \times K_2(x,y)$ (multiplication)
- There is a theorem called Mercer's theorem that characterises valid kernels.

	< 日 > < 년 > < 분 > < 분 >	目 うくぐ
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	35 / 40
Many other kernels	5	

- Linear kernel $K(x,y) = x^T y + c$
- Exponential kernel $K(x,y) = \exp(-\frac{||x-y||}{2\sigma^2})$
- Sigmoid kernel $K(x,y) = \tanh(\alpha x^T y + c)$
- Histogram intersection kernel $K(x,y) = \sum_{i=1}^{n} \min(x_i, y_i)$
- Cauchy kernel $K(x,y) = \frac{1}{1 + \frac{||x+y||^2}{\sigma^2}}$
- Discrete structure kernel: string kernel, tree kernel, graph kernel.
- And many more ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Gram matrix encodes similarities between input data points.
- A bad kernel would be a kernel function which gives near diagonal Gram matrix



• No clusters, no structure.

Applications

- Handwritten digits recognition
 - Dataset: US Postal service
 - ▶ 4% error was obtained
 - about only 4% of the training data were SVs.
- Text categorisation
- Face detection
- DNA analysis
- And many more ...

< ロ > < 目 > の < の< の			・日 ・ (川 ・ ・ ・ 中・ ・ 日 ・ ・ 日 ・ ・ 日 ・		
Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	37 / 40	Jakramate Bootkrajang	CS789: Machine Learning and Neural Networ	39 / 40
SVMs and Kernels			Summary		

- Prepare the data matrix.
- Select the kernel function to use, compute Gram matrix.
- Execute the training algorithm using a QP solver to obtain the α_i values
- Unseen data can be classified using the α_i values and the support vectors

$$f(x) = \operatorname{sign}(\sum_{i=1}^{SV} \alpha_i y_i K(x_i, x))$$

• SVMs learn linear decision boundaries. (discriminative approach)

- They pick the hyperplane that maximises the (geometric) margin.
- The optimal hyperplane turns out to be a linear combination of support vectors.
- Transform nonlinear problems to higher dimensional space using kernel functions.
- In hope for linearly-separable classes in the transformed space.