
CS789: Machine Learning and Neural Network
Bayesian learning

Jakramate Bootkrajang

Department of Computer Science
Chiang Mai University

Jakramate Bootkrajang CS789: Machine Learning and Neural Network 1 / 52

What will we learn in this lecture?

We will learn about
▶ Bayes’ rule

▶ We will construct various classifiers using Bayes’ rule
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Bayes’ Rule

P (Y |X) =
P (X|Y )P (Y )

P (X)

P (Y ): prior belief, prior probability, or simply prior.
▶ Probability of observing class Y .

P (X|Y ): likelihood
▶ (Relative) probability of seeing X in class Y

P (X) =
∑

Y P (X|Y )P (Y ): data evidence

P (Y |X): a posteriori probability
▶ Probability of class Y after having seen the data X
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A Side Note on Probability

A likelihood function L(θ|X) is a function describing probability of a
parameter given an outcome.

For a dataset S = (x1, . . . , xm) the likelihood of parameter θ is given
by

L(θ|X) = P (X = x1|θ) · P (X = x2|θ) · · ·P (X = xm|θ)
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A Side Note on Probability

Suppose we have two dices h1 and h2
▶ Say, h1 is fair but h2 is biased

The probability of getting i given the h1 dice is called
conditional probability, denoted by P (i|h1)

Pick a dice at random with P (hj) : j = 1, 2. The probability for
picking the hj dice and getting an i with the dice is called
joint probability, and is P (i, hj) = P (hj)P (i|hj)

The so-called marginal probability is P (i) =
∑

hj
P (i, hj).
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Bayes’ decision rule

Consider a binary classification: Y ∈ {−1, 1}, we can construct a classfier
with minimal probability of error if we define

Definition (Bayes decision rule)

h∗(x) =

{
1 P (Y = 1|X = x) > 1/2

−1 otherwise
(1)

Theorem

For any classifier h : X → {−1, 1},

P (h∗(X) ̸= Y ) ≤ P (h(X) ̸= Y ), (2)

that is, h∗ is the optimal classifier.
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Building a classifier using Bayes rule

P (Y |X) =
P (X|Y )P (Y )

P (X)

Goal:

Calculate probabilities of how likely to see label Y when X is
presented, P (Y |X)

How ?

Find P (X|Y )

Find P (Y )

Find P (X)
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Building a classifier using Bayes rule

Way to obtain P (X|Y )
▶ P (X|Y ) can be given.

▶ P (X|Y ) can be modelled using discrete probability distribution.
⋆ We can count number of time X occurs to estimate its likelihood given

Y.

▶ P (X|Y ) can be modelled using continuous probability distribution.
⋆ We estimate parameters of the distribution.

Way to obtain P (Y ), find ratio #Y
N

Way to obtain P (X), find marginal probability
∑

Y P (X|Y )P (Y )
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Two philosophies of estimating P (Y |X)

Maximum Likelihood: assume equal priors
▶ hML(X) = argmaxy P (Y = y|X) = argmaxy

P (X|Y=y)×0.5
P (X)

▶ Often used when we have very little idea about the data.

Maximum a Posteriori: consider priors
▶ hMAP (X) = argmaxy P (Y = y|X) = argmaxy

P (X|Y=y)×P (Y=y)
P (X)

▶ Generally gives better performance if we have the priors.
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A word about the Bayesian Framework

Allows us to combine observed data and prior knowledge

Provides practical learning algorithms

It is a generative approach, which offers a useful conceptual
framework

▶ This means that any kind of objects (e.g. time-series, trees, etc.) can
be classified, based on a probabilistic model specification
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Case 1: P (X|Y ) is given

Does a patient have cancer or not?
A patient takes a lab test and the result comes back positive. It is known
that the test returns a correct positive result in only 98% of the cases and
a correct negative result in only 97% of the cases. Furthermore, only 0.008
of the entire population has this disease.
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Working out the variables

Y = {cancer,¬cancer}, X = {positive, negative}

To decide whether the patient has cancer we have to calculate
▶ The posterior probability the the patient has cancer,

P (Y = cancer|X = positive)

▶ The posterior probability the the patient does not have cancer,
P (Y = ¬cancer|X = positive)

According to the Bayes decision rule, we pick y which gives
P (Y = y|X = x) > 0.5
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ML Solution

1. The posterior probability of having cancer.

P (Y = cancer|X = positive) =
P (X = positive|Y = cancer)× 0.5

P (X = positive)

P (X = positive) = P (X = positive|Y = cancer)P (cancer)

+ P (X = positive|Y = ¬cancer)P (¬cancer)
= . . . . . . . . .

2. The posterior probability of being healthy.

P (Y = ¬cancer|X = positive) =
P (X = positive|Y = ¬cancer)× 0.5

P (X = positive)

= . . . . . . . . .

3. Diagnosis ??

Jakramate Bootkrajang CS789: Machine Learning and Neural Network 13 / 52

MAP Solution

1. The posterior probability of having cancer.

P (Y = cancer|X = positive) =
P (X = positive|Y = cancer)× 0.008

P (X = positive)

P (X = positive) = P (X = positive|Y = cancer)P (cancer)

+ P (X = positive|Y = ¬cancer)P (¬cancer)
= . . . . . . . . .

2. The posterior probability of being healthy.

P (Y = ¬cancer|X = positive) =
P (X = positive|Y = ¬cancer)× 0.992

P (X = positive)

= . . . . . . . . .

3. Diagnosis ??
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Case 2: Discrete P (X|Y )

The dataset: (W,F), (BR,F), (W,A), (B,F), (B,F), (BR,F), (W,A)

Assume we have a set of data which classifies dog friendliness based
on its colour.

Y = {Aggressive, Friendly}, X = {White,BRown,Black}

If we see new white dog would it be friendly ?
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ML Solution

1. The posterior probability of being friendly.

P (Y = friendly|X = white) =
P (X = white|Y = friendly)× 0.5

P (X = white)

P (X = white) = P (X = white|Y = friendly)P (Y = friendly)

+ P (X = white|Y = aggressive)P (Y = aggressive)

= . . . . . . . . .

2. The posterior probability of being aggressive.

P (Y = aggressive|X = white) =
P (X = white|Y = aggressive)× 0.5

P (X = white)

= . . . . . . . . .

3. Diagnosis ??
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The Naive Bayes Classifier (1/2)

What if our example has several attributes? x = {a1, a2, . . . , an}

The problem is P (X,Y ) = P (Y )P (X|Y ) factorised into a long
sequence.

By chain rule,

P (X,Y ) = P (Y )P (a1, . . . , am|Y )

= P (Y )P (a1|Y )P (a2, . . . , am|Y, a1)
= P (Y )P (a1|Y )P (a2|Y, a1)P (a3, . . . , am|Y, a1, a2)

The naive assumption assumes that each feature ai is conditionally
independent of every other feature aj for j ̸= i
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The Naive Bayes Classifier (2/2)

So we have P (ai|Y, aj , . . . ) = P (ai|Y ) and so on.

Which gives: P (X|Y ) = P (a1, . . . , am|Y ) =
∏

i P (ai|Y )

A Bayesian classifier that uses the Naive assumption is called
The Naive Bayes classifier.

One of the most practical methods widely used in,
▶ Medical applications.

▶ Text classification.
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Example of Naive classifier: Playing Tennis
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Naive Bayes Solution

Classify any new data point x = (a1, . . . , am) as

hnaive(X) = argmaxY P (Y )P (X|Y ) = argmaxY P (Y )
∏

i P (ai|Y )

We need to estimate the parameters from the training examples
▶ For each class y: P̂ (Y = y)

▶ For each feature ai: P̂ (ai|Y )

Based on the examples in the table, classify the following x

x = {sunny, cool, high, strong}, Play tennis or not ?
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The working

hnaive = argmaxy∈[yes,no] P (Y = y)P (X = x|Y = y)

= argmaxy∈[yes,no] P (Y = y)
∏

i

P (ai|Y = y)

= argmaxy∈[yes,no] P (Y = y)P (sunny|Y = y)P (cool|Y = y)

P (high|Y = y)P (strong|Y = y)

Now find

▶ P (Y = yes) = 9/14 = 0.64

▶ find P (sunny|Y = yes) = 2/9 = 0.22

▶ find P (cool|Y = yes) = 3/9 = 0.33

▶ find P (high|Y = yes) = . . . . . .

▶ find P (strong|Y = yes) = . . . . . . and so on....
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Exercise

Assume we have a data set described the following three variables:
Hair = B,D, where B=blonde, D=dark.
Height = T,S, where T=tall, S=short.
Country = G,P, where G=Greenland, P=Poland.

You are given the following training data set (Hair, Height, Country):
(B,T,G), (D,T,G), (D,T,G), (D,T,G), (B,T,G), (B,S,G), (B,S,G),
(D,S,G), (B,T,G), (D,T,G), (D,T,G), (D,T,G), (B,T,G), (B,S,G),
(B,S,G), (D,S,G), (B,T,P), (B,T,P), (B,T,P), (D,T,P), (D,T,P),
(D,S,P), (B,S,P), (D,S,P).

Now, suppose you observe a new individual tall with blond hair, and
you want to use these training data to determine the most likely
country of origin.

Compute the maximum a posteriori (MAP) answer to the above
question, using the Naive Bayes assumption.
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Learning to classify text

The attributes (features) are the words

NB classifiers are one of the most effective for this task
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Representation of text: bag of words

I love this movie! It’s sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun... It
manages to be whimsical and
romantic while laughing at the
conventions of the fairy tale
genre. I would recommend it to
just about anyone. I’ve seen
it several times, and I’m
always happy to see it again
whenever I have a friend who
hasn’t seen it yet.
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Representation of text: bag of words

Predefine vocabolary set V and highlight w ∈ V .

I love this movie! It’s sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun... It
manages to be whimsical and
romantic while laughing at the
conventions of the fairy tale
genre. I would recommend it to
just about anyone. I’ve seen
it several times, and I’m
always happy to see it again
whenever I have a friend who
hasn’t seen it yet.

Jakramate Bootkrajang CS789: Machine Learning and Neural Network 25 / 52

Representation of text: bag of words

great 2

love 2

recommend 1

laugh 1

terrible 0

happy 1

sad 0
...

...
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Parameter estimation

Simply use the frequencies in the data (Case 2)

Class prior probability:

P (Y = yj) =
count(Y=yj)

m

Likelihood

P (wi|Y = yj) =
count(wi,Y=yj)∑

w∈V
count(w,Y=yj)

Problem of the above is if no training documents contain the word
fantastic in class positive, then P (“fantastic”|positive) = 0

So P (positive|Xnew) will always be zero.
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Laplace smoothing for Naive Bayes

To pretend that you have seen each of all the words in V at least α times.

P (wi|Y ) =
count(wi, Y ) + α∑

w∈V
(count(w, Y ) + α)

=
count(wi, Y ) + α

(
∑
w∈V

count(w, Y )) + α|V |

Here, α is called smoothing parameter (aka hyper-parameter) which often
be tuned using cross-validation.
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Example of 20-Newsgroups text classification using NB
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Summary

Bayes’ rule can be turned into a classifier

Maximum A Posteriori (MAP) hypothesis estimation incorporates
prior knowledge; Maximum Likelihood doesn’t

Naive Bayes classifier is a simple but effective Bayesian classifier for
vector data (i.e. data with several attributes) that assumes that attr.
are independent given the class.

Bayesian classification is a generative approach to classification.
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Case 3: Motivations

We have already seen how Bayes rule can be turned into a classifier.

Our examples so far only consider discrete attributes.
▶ E.g. {sunny, warm}, {positive,negative}

Today we learn how to do this when the data attributes are
continuous.
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An example problem

Task: predict gender of individuals based on their heights.

Given
▶ 100 height examples of women.

▶ 100 height examples of man.

Encode class label of male as y = 1 and female as y = 0. So,
y ∈ {0, 1}.
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Class posterior

From Bayes rule we can obtain the class posteriors of male:

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

The denominator is the probability of measuring the height x
irrespective of the class.
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Modelling p(x|y) using continuous probability distribution

Our measurements are heights. This is our data, x.

Class-conditional likelihoods
▶ p(x|y = 1): probability that a male has height x metres.

▶ p(x|y = 0): probability that a female has height x metres.

We will model each class by a Gaussian distribution. (Other
distribution is possible)
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Univariate Gaussian (Normal Distribution)

p(x|y = k) =
1√
2πσ2

k

exp{−(x− µk)
2

2σ2
k

}

where µk is the mean(centre), and σ2
k is the variance (spread). These

are parameters that describe the distributions.

We will have separate Gaussian for each class. So, the female class
will have µ0 as its mean, and σ2

0 as its variance. And male class with
m1 and σ2

1.

We will estimate these parameters from the data.
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Illustration - our 1D example
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Multivariate Gaussian

Let x = {x1, x2, x3, . . . , xd}. Let k ∈ {0, 1}

p(x|y = k) =
1

(2π)d/2|Σk|1/2
exp{−1

2
(x− µk)

tΣ−1
k (x− µk)}

where µk is the mean vector, and Σk is the covariance matrix.

These parameters get estimated from the data.
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Illustration - 2D example
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Example with 2 classes
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Class priors

Class prior: the probability of seeing male example (and female
example).

Since in this example we had the same number of males and females,
we empirically calculate,

p(y = 1) = p(y = 0) =
100

100 + 100
= 0.5

These are priors of class membership and they could be set before
measuring any data.

The class prior can be useful in cases where class proportions are
imbalanced.

Jakramate Bootkrajang CS789: Machine Learning and Neural Network 40 / 52



Discriminant function

According to Bayes decision rule, we will predict y = 1 if
p(y = 1|x) > 1/2 and y = 0 otherwise.

We can formulate the above rule as a mathematical function.

f1(x) = 1
(p(y = 1|x)
p(y = 0|x) > 1

)

Or equivalently

f2(x) = 1
(
log

p(y = 1|x)
p(y = 0|x) > 0

)

The sign of f2 defines the prediction f2(x) > 0 = male, f2(x) ≤ 0 = female

Such functions are called discriminant functions.
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Discriminant Analysis

Recall our discriminant function f2(x) = log p(y=1|x)
p(y=0|x)

We’d like to know what decision boundary a particular Σ will induced.

We write (for normal density and ωi
def
= p(y = k))

f2(x) = log
p(x|µ1,Σ1)ω1

p(x|µ0,Σ0)ω0

= log p(x|µ1,Σ1) + logω1 − log p(x|µ0,Σ0)− logω0

= . . .

= −1

2
(x− µ1)

tΣ−1
1 (x− µ1)−

d

2
log 2π − 1

2
log |Σ1|+ logω1

+
1

2
(x− µ0)

tΣ−1
0 (x− µ0) +

d

2
log 2π +

1

2
log |Σ0|− logω0

Jakramate Bootkrajang CS789: Machine Learning and Neural Network 42 / 52

Discriminant Analysis: case Σ1 = Σ0 = σ2I

The determinant is |Σ| = σ2d

And Σ−1 = (1/σ2)I

f2(x) = −1

2
(x− µ1)

t I

σ2
(x− µ1) + logω1

+
1

2
(x− µ0)

t I

σ2
(x− µ0)− logω0

= − 1

2σ2
(xtx− 2µt

1x+ µt
1µ1) + logω1

+
1

2σ2
(xtx− 2µt

0x+ µt
0µ0)− logω0

= − 1

σ2
(µt

1x− 1

2
µt
1µ1) +

1

σ2
(µt

0x− 1

2
µt
0µ0) + log

ω1

ω0
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Discriminant Analysis: case Σ1 = Σ0 = σ2I

− 1

σ2
(µt

1x− 1

2
µt
1µ1) +

1

σ2
(µt

0x− 1

2
µt
0µ0) + log

ω1

ω0
= 0

−(µt
1x− 1

2
µt
1µ1) + (µt

0x− 1

2
µt
0µ0) + σ2 log

ω1

ω0
= 0

(µ0 − µ1)
tx+

1

2
µt
1µ1 −

1

2
µt
0µ0 + σ2 log

ω1

ω0
= 0

(µ0 − µ1)
tx+

1

2
(µt

1µ1 − µt
0µ0) + σ2 log

ω1

ω0
= 0

(µ0 − µ1)
tx+

1

2
(µ1 − µ0)

t(µ1 + µ0) + σ2 log
ω1

ω0
= 0

(µ0 − µ1)
tx− (µ0 − µ1)

t
[1
2
(µ1 + µ0) +

σ2

(µ0 − µ1)
log

ω1

ω0

]
= 0

wt(x− x0) = 0
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Discriminant Analysis: case Σ1 = Σ0 = σ2I

wt(x− x0) = 0

This defines a hyperplane through point x0 and orthogonal to w.

Since w = (µ0 − µ1) the hyperplane is a plane normal to the line
linking the means.

The plane cut the line at x0.

If ω1 = ω0 then x0 = (µ0 − µ1)/2, the midpoint between the means.

In other cases, x0 shifts away from the more likely mean (from class
with larger ω or larger prior)
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Discriminant Analysis: case Σ1 = Σ0 = Σ

Along the same line of analysis we found that in this case

w = Σ−1(µi − µj)

x0 =
1

2
(µi − µj)−

log[p(ωi)/p(ωj)]

(µi − µj)tΣ−1(µi − µj)
(µi − µj)

The decision boundary is still linear and ω controls the intercept on
the line linking the means.

However, the hyperplane is not orthogonal to the line between the
means due to the covariance, w = Σ−1(µi − µj)
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Discriminant Analysis: case Σ1 ̸= Σ0 = arbitrary

In the last case we found that

f2(x) = −1

2
(x− µ1)

tΣ−1
1 (x− µ1)−

d

2
log 2π − 1

2
log |Σ1|+ logω1

+
1

2
(x− µ0)

tΣ−1
0 (x− µ0) +

d

2
log 2π +

1

2
log |Σ0|− logω0

The decision boundary is quadratic, since things cannot be simplified.

The non-linearity of this form leads to more powerful classifier for
tackling data which is not linearly-separable.
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Gaussian’s parameters estimation

The covariance

Σk =

∑mk
i=1(xi − µk)(xi − µk)

t

mk

The mean

µk =

∑mk
i=1 xi
mk

The prior

ωk = p(y = k) =
mk

m
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Naive assumption

The full covariance are d× d

In many situation there is not enough data to estimate full covariance.

The Naive Bayes is again useful and tends to work well in practice.

Using Naive assumption the covariance becomes diagonal.
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Multi-class classification

We may have more than two classes. Say, ‘Healthy’, ‘Disease 1’,
‘Disease 2’.

Our Gaussian classifier is easy to use in multi-class problem.

We compute posterior probability for each of the classes.

We predict class with highest posterior.
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Summary

This type of classifier is call Generative because it makes an
assumption that the points in each class are generated by some
distribution i.e., Gaussian distribution in our example.

One can model the discriminant function directly. That is called
Discriminative classifier – (next week)
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