Lists and the “for’ loop

Lists

Lists are an ordered collection of objects

>>> data = []
>>> print data

[]
>>> data.append("Hello!")

Make an empty list

>>> print data ‘append” == "“add to the end”
["Hello! ']

>>> data.append(5) You can put different objects in
>>> print data .

['Hello!', 5] the same list

>>> data.append([9, 8, 7])
>>> print data

['Hello!', 5/ [9I 8! 7]] €6 ’
>>> data.extend([4, 5, 61) extend” appends each

>>> print data element of the new
['Hello!', 5, [9, 8, 7], 4, 5, 6]

>>> list to the old one

Lists and strings are

Strings

>>> s = "ATCG"
>>> print s[0]
A

>>> print s[-1]
G

>>> print s[2:]
CG

>>> print "C" in s
True

>>> g * 3
'ATCGATCGATCG'
>>> s5[9]

Traceback (most recent call last):

File "<stdin>",
IndexError:
range
>>>

line 1, in ?
string index out of

similar

Lists

>>> [, =
"guanine"]
>>> print L[0]

adenine

>>> print L[-1]

guanine

>>> print L[2:]

['cytosine', 'guanine']
>>> print "cytosine" in L
True

>>> L * 3

["adenine", "thymine", "cytosine",

'guanine’,
'guanine’,
'guanine’]

['adenine', 'thymine', 'cytosine',

‘adenine', 'thymine', 'cytosine',

'adenine', 'thymine', 'cytosine',

>>> L[9]

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: list index out of range

>>>

But lists are mutable

Lists can be changed. Strings are immutable.

>>> s = "ATCG"
>>> print s
ATCG

>>> g[l] = "U"

Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment

>>> s.reverse()

Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: 'str' object has no attribute
'reverse'

>>> print s[::-1]
GCTA
>>> print s

ATCG
>>>

>>> L = ["adenine", "thymine", "cytosine",
"guanine"]

>>> print L

['adenine', '"thymine', 'cytosine', 'guanine']
>>> L[1l] = "uracil"”

>>> print L

['adenine', 'uracil', 'cytosine', 'guanine']

>>> L.reverse()

>>> print L

['guanine', 'cytosine', 'uracil', 'adenine']

>>> del L[O0]

>>> print L

['cytosine', 'uracil', 'adenine']

>>>

Lists can hold any object

>> L =[1"", 1, "two", 3.0, ["quatro", "fem", [6]], [1]]
>>> len(L)

5

>>> print L[-1]

['quatro', 'fem', [63], []]
>>> len(L[-1])

4

>>> print L[-1][-1]

[]

>>> len(L[-1]1[-1])

0

>>>

A few more methods

>>> 1L, = ["thymine", "cytosine", "guanine"]
>>> L.insert(0, "adenine")

>>> print L

['adenine’', 'thymine', 'cytosine', 'guanine']
>>> L.insert (2, "uracil")

>>> print L

['adenine’', 'thymine', 'uracil', 'cytosine', 'guanine']
>>> print L[:2]

['adenine’', 'thymine']

>>> L[:2] = ["A", "T"]

>>> print L

['A', 'T', 'uracil', 'cytosine', 'guanine']
>>> L[:2] = []

>>> print L

['uracil', 'cytosine', 'guanine']

>>> L[:] = ["aA", "T", "C", "G"]

>>> print L

['‘a', ', 'c’, 'G']

>>>

Turn a string into a list

>>> s = "AAL532906 aaaatagtcaaatatatcccaattcagtatgcgctgagta'
>>> 1 = g.find(" ")

>>> print i

9

>>> print s[:i] Complicated
AAL532906

>>> print s[it+1l:]
aaaatagtcaaatatatcccaattcagtatgcgctgagta
>>>

>>> filelds = s.split() Easier!
>>> print fields
['AAL532906', 'aaaatagtcaaatatatcccaattcagtatgcgctgagta']

>>> print fields[0]
AALL532906
>>> print len(fields[1l])

40
>>>

More split examples

>>> protein = "ALA PRO ILU CYS"

>>> residues = protein.split() split() uses ‘whitespace’ to
>>> print residues

['ALA', 'PRO', 'ILU', 'CYS'] find each word

>>>

>>> protein = " ALA PRO ILU CYS \n"

>>> print protein.split()
['ALA', 'PRO', 'ILU', 'CYS'] .
split(c) uses that character

>>> print "HIS-GLU-PHE-ASP".split("-") CO find each word
['HIS', 'GLU', 'PHE', 'ASP']
>>>

Turn a list into a string

join is the opposite of split

>>> L1 = ["Asp", "Gly", "Gln", "Pro", "Val"]
>>> print "-".join(L1)

Asp-Gly-Gln-Pro-Val

>>> print "**"_,join(L1)
Asp**Gly**Gln**Pro**Val

>>> print "\n".join(L1l)

Asp . .

Gly \ The order is confusing.

Gln - string to join is first

Pro - list to be joined is second
Val

>>>

The ‘for’ loop

Lets you do something to
each element in a list

>>> for name in ["Andrew", "Tsanwani", "Arno", "Tebogo"]:
print "Hello,", name

Hello, Andrew
Hello, Tsanwani
Hello, Arno

Hello, Tebogo
>>>

Hello,
Hello,
Hello,

Hello,
>>>

The ‘for’ loop

Lets you do something to
each element in a list

same in ["Andrew", "Tsanwani", "Arno", "Tebogo"]:

pint "Hello,", name

Andrew
Tsanwani
Arno
Tebogo

N
a hew code block

it must be indented

IDLE indents automatically when
it sees a7’ on the previous line

A two line block

All lines in the same code block
must have the same indentation

>>> for name in ["Andrew", "Tsanwani", "Arno", "Tebogo"]:
.« e print "Hello,", name

«oe print "Your name is", len(name), "letters long"
Hello, Andrew

Your name is 6 letters long

Hello, Tsanwani

Your name is 8 letters long

Hello, Arno

Your name is 4 letters long

Hello, Tebogo

Your name is 6 letters long

>>>

When indentation does
not match

>>> a =1
File "<stdin>", line 1
a =1
SyntaxError: invalid syntax
>>> for name in ["Andrew", "Tsanwani'", "Arno", "Tebogo"]:

print "Hello,", name
.« print "Your name is", len(name), "letters long"

File "<stdin>", line 3
print "Your name is", len(name), "letters long"

A

SyntaxError: invalid syntax
>>> for name in ["Andrew", "Tsanwani", "Arno", "Tebogo"]:

print "Hello,", name
«oe print "Your name is", len(name), "letters long"

File "<stdin>", line 3
print "Your name is", len(name), "letters long"

A

IndentationError: unindent does not match any outer indentation level

>>>

‘for’ works on strings

A string is similar to a list of letters

>>> seq = "ATGCATGTCGC"
>>> for letter in seq:
c e print "Base:", letter

Base:
Base:
Base:
Base:
Base:
Base:
Base:
Base:
Base:
Base:
Base:

>>>

QO aoHAaaaAaP Qa3

Numbering bases

>>> seq = "ATGCATGTCGC"

>>> n = 0

>>> for letter in seq:

c e print "base", n, "is", letter
n =n+1

®e o o

is
is
is

base 0

base 1

base 2

base 3 is
base 4 is
base 5 is
base 6 is
base 7 is
base 8 is
base 9 is
base 10 is C

>>>

>>> print "The sequence has", n, "bases'

The sequence has 11 bases
>>>

oA a3 0043w

>>>
[0,
>>>
[0,
>>>
[2,
>>>
[0,
>>>
[0,
>>>
[0,
>>>
[0,
>>>

[]

>>>
[8,
>>>

The range function

range(5)
1, 2, 3,
range(8)
1, 2, 3,
range(2,
3[4! 5!
range(0,
1, 2, 3,
range (0,
2, 4, 6]
range (0,
3, 6]
range(0,
4]

range (0,

range (8,
7[6! 5!

>>> help(range)
Help on built-in function range:

range(...)
range([start,] stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i,i+1,i+2, ..., j-1]; start (!) defaults to 0.

When step is given, it specifies the increment (or decrement).

For example, range(4) returns [0, I, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

Do something ‘N’ times

>>> for i in range(3):
print "If | tell you three times it must be true.”

If | tell you three times it must be true.
If | tell you three times it must be true.
If | tell you three times it must be true.
>>>
>>> for i in range(4):
print i, "squared is", i*i, "and cubed is", i*i*i

0 squared is 0 and cubed is O
| squared is | and cubed is |
2 squared is 4 and cubed is 8

3 squared is 9 and cubed is 27
>>>

Exercise |

Write a program that asks for a sequence
(use the raw_input function) then prints it
10 times. Include the loop count in the
output

Enter a sequence: TACG
TACG
TACG
TACG
TACG
TACG
TACG
TACG
TACG
TACG
TACG

W 00O o6 O s WDN KL O

Exercise 2

Write a program that asks for a sequence
then numbers each base, one base per line.

Enter a sequence: GTTCAG

base 0 is G
base 1 1is T
base 2 is T
base 3 is C
base 4 is A
base 5 is G

Can you modify your program to start
with base | instead of 0?

Exercise 3

Here is a Python list of restriction site patterns

restriction sites = |

"GAATTC", # ECORI
"GGATCC", # BamHI
"AAGCTT", # HindIII

)
Write a program that prints each pattern.

GAATTC is a restriction site
GGATCC is a restriction site
AAGCTT is a restriction site

Note: there is no input for this exercise,
just print the items in the list.

Exercise 4

Modify the program from Exercise 3 to ask for a sequence
then say whether each restriction site is or is not present

Enter a sequence: AGAATTC

GAATTC 1s 1n the sequence: True
GGATCC 1s 1n the sequence: False
AAGCTT 1is 1n the sequence: False

Hint from yesterday’s lecture on strings - use ‘in’:

>>> print "AT" in "GATTACA"
True

>>> print "GG" in "GATTACA"
False

>>>

