
Creating a Scheduled task to run a PowerShell script 
The first thing I need to create a scheduled task to run a Windows PowerShell 
script is the command line that I will execute. The easy way to find this is to use 
the Run command. At times, I need to know what the command-line switches are 
for PowerShell.exe. To see these, I open Windows PowerShell and type 
powershell /? and then I examine the output that displays. The command and the 
output from the command are shown here. 

 

When I know which switches to use, I practice my command via Run. The 
following image illustrates using Run to launch Windows PowerShell and to run a 
Windows PowerShell script. Keep in mind that this will open, and close Windows 
PowerShell, which is fine for a script producing a report. In testing, I often use the 
–noexit switch to see any errors arising from the operation. 



 

When I know the command line, I use the Task Scheduler tool, and create a new 
basic task. First, I need to assign a name and a description. I find it useful to 
provide a good description as well as a decent name because it facilitates 
performing maintenance on the task. 

 

The next pane is the Task Trigger pane. It is pretty basic, and self-explanatory. 
Because I want to create a daily task, I leave that selected. After it is created, it is 



easy to edit the scheduled task to make it run the task more often, such as every 
hour if that is the need. One reason I use the Basic Task Wizard is that it is easy 
to get through the steps needed to create the basic task. I always edit stuff later. 
The Task Trigger pane is shown here. 

 

Now it is time to set the schedule for the task. In this example, the task runs 
every morning at 7:00 AM beginning on August 11, 2012. 



 

In the Action pane that follows, I select that we want the scheduled task to Start a 
program, and then click Next. 



 

In the Start a Program pane, I cheat by placing the command I tested previously 
from the Run box into the Program/script box. I then click Next. The Start a 
Program pane is shown here. 



 

Here is where the cheating part comes in to play. I used, directly, the command I 
tested in the Run box for my program. Rather than attempting to break things up, 
I simply copied the entire line. The Scheduled Task Wizard is smart enough to 
know what I wanted to do. It prompts, but it knows. The prompt appears here. 

 



When I have completed the Create Basic Task Wizard, I want to open the task 
and make a couple of additional changes. The easy way to do this is to select the 
Open the Properties dialog for this task when I click Finish, as shown here. 

 

Because the task runs on a server, and because one might not be logged on to 
the server at the time the task is to run, it makes sense to tell the task to run 
whether or not the user is logged on. This opens a credential dialog, and allows 
me to set the password for the task. This option appears on the General tab of 
the scheduled job as shown in the image here. 



 

When I have completed configuring the scheduled task, I always right-click the 
job and select Run. Then I examine the job history to ensure that the task 
completed properly. The History tab of the scheduled job is shown here. 



 

Well, that is about all there is to creating a scheduled job to run a Windows 
PowerShell script. In Windows 8 and Windows Server 2012, there are Windows 
PowerShell cmdlets to create the scheduled job and to create the job triggers 
and actions—but that will be the subject of a later Hey, Scripting Guy! Blog post. 

 


