
Computer Science, CMU

Sorting and Searching

CS700 1

Computer Science, CMU

To be able to explain and implement sequential search
and binary search.

To be able to explain and implement selection sort,
bubble sort, merge sort, quick sort, insertion sort, and
shell sort.

To understand the idea of hashing as a search technique.

To introduce the map abstract data type.

To implement the map abstract data type using hashing.

Objectives

CS700 2

Computer Science, CMU

Searching is the algorithmic process of finding a particular item in
a collection of items.

A search typically answers either True or False as to whether the
item is present.

In Python, there is a very easy way to ask whether an item is in
a list of items. We use the in operator.

Searching Algorithm:
Sequential Search
Binary Search
Hashing

Searching

CS700 3

>>> 15 in [3,5,2,4,1]

False

>>> 3 in [3,5,2,4,1]

True

>>>

Even though this is easy to write,

However, there are many different ways to

search for the item.

Computer Science, CMU

Sequential Search: Unordered List
Starting at the first item in the list,

Move from item to item, following the underlying sequential
ordering until we either:

find what we are looking for or

run out of items.

• If we run out of items, we have discovered that the item we were
searching for was not present.

Searching

CS700 4

Figure 5.1: The Sequential Search of a List of Integers

Computer Science, CMU

Sequential Search: Unordered List (Cont.)

Implementation

Searching

CS700 5

def sequential_search(a_list, item):

pos = 0

found = False

while pos < len(a_list) and not found:

if a_list[pos] == item:

found = True

else:

pos = pos+1

return found

test_list = [1, 2, 32, 8, 17, 19, 42, 13, 0]

print(sequential_search(test_list, 3)) # False

print(sequential_search(test_list, 13)) # True

- The function needs the list and the

item we are looking for

- and returns a boolean value as to

whether it is present.

- The boolean variable found is

initialized to False

- and is assigned the value True if

we discover the item in the list.

Computer Science, CMU

Analysis of Sequential Search for Unordered List

If the item is not in the list,
The only way to know, it is to compare it against every item present.

If there are 𝑛 items, then the sequential search requires 𝑛 comparisons
to discover that the item is not there.

If the item is in the list: there are actually three different scenarios that
can occur.

In the best case: we will find the item in the beginning of the list.

• We will need only one comparison.

In the worst case: we will discover the item in the nth comparison.

Searching

CS700 6

Computer Science, CMU

Analysis of Sequential Search for Unordered List (Cont.)

If the item is not in the list, we will compare 𝑛 items

If the item is in the list, we will compare 𝑛/2 items in average.

However, 𝑛 is the large number, the coefficients is not significant in
approximation, so the complexity of the sequential search, is 𝑂(𝑛).

Searching

CS700 7

Table 5.1: Comparisons Used in a Sequential Search of an Unordered List

Computer Science, CMU

Sequential Search: Implementation (for Ordered List)

Searching

CS700 8

def ordered_sequential_search(a_list, item):

pos = 0

found = False

stop = False

while pos < len(a_list) and not found and not

stop:

if a_list[pos] == item:

found = True

else:

if a_list[pos] > item:

stop = True

else:

pos = pos+1

return found

test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42,]

print(ordered_sequential_search(test_list, 3))

print(ordered_sequential_search(test_list, 13))

- If the item we are looking for is

present in the list,

• The chance of it being in any

one of the 𝑛 positions is still

the same as before

• We will still have the same

number of comparisons to

find the item as Unordered List.

- If the item is not present there is a

slight advantage,

• The algorithm can stop

immediately after the item

compared to the searched item

is greater than the searched

item.

Computer Science, CMU

Analysis of Sequential Search for Ordered List
If the item is not in the list, we will compare 𝑛 items

In the best case, we might discover that the item is not in the list by
looking at only one item
In the worst case, we might discover that the item is not in the list by
looking at the nth item
On average, we will know after looking through only 𝑛/2 items

If the item is in the list: there are actually three different scenarios that
can occur.

In the best case: we will find the item in the beginning of the list.
In the worst case: we will discover the item in the nth comparison.

Searching

CS700 9

Table 5.2: Comparisons Used in Sequential Search of an Ordered List

The

complexity

is 𝑂(𝑛)

Computer Science, CMU

Binary Search
1) Start by examining the middle item. If that item is the one we are

searching for, we are done.

2) If it is not the correct item, we can use the ordered nature of the list to
eliminate half of the remaining items:

If the item we are searching for is greater than the middle item, the entire
lower half of the list as well as the middle item can be eliminated from
further consideration.

If the item we are searching for is less than the middle item, the entire
upper half of the list as well as the middle item can be eliminated from
further consideration.

3) Repeat step 1 to 2 until either the searched item is found or not found

Searching

CS700 10

Computer Science, CMU

Binary Search: Implementation

Searching

CS700 11

Using while loop

def binary_search(a_list, item):
first = 0
last = len(a_list) - 1
found = False
while first <= last and not found:

midpoint = (first + last) // 2
if a_list[midpoint] == item:

found = True
else:

if item < a_list[midpoint]:
last = midpoint - 1

else:
first = midpoint + 1

return found

test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(test_list, 3))
print(binary_search(test_list, 13))

Using Recursion

def binary_search(a_list, item):
if len(a_list) == 0:

return False
else:

midpoint = len(a_list) // 2
if a_list[midpoint] == item:

return True
else:

if item < a_list[midpoint]:
return

binary_search(a_list[:midpoint], item)
else:

return
binary_search(a_list[midpoint + 1:], item)

test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(test_list, 3))
print(binary_search(test_list, 13))

Computer Science, CMU

Binary Search: Step by Step (Ex. searching for 31)
Searching

CS700 12

mid = low + (high - low) / 2 = 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So 4 is the mid of the list.

27 < 31  the entire lower half of the list are eliminated

http://www.tutorialspoint.com/data_structures_algorithms/binary_search_algorithm.htm

Computer Science, CMU

Binary Search: Analysis of Algorithm
• Each comparison eliminates about half of the remaining items from

consideration.
• If we start with 𝑛 items, about 𝑛/2 items will be left after the first comparison.
• After the second comparison, there will be about 𝑛/4.
• Then 𝑛/8, 𝑛/16, and so on.
• When we split the list enough times, we end up with a list that has just one

item. Either that is the item we are looking for or it is not. Either way, we are
done.

• The number of comparisons necessary to get to this point is 𝑖 where 𝑛/2𝑖 = 1.
Solving for 𝑖 gives us 𝑖 = log 𝑛.

• The maximum number of comparisons is logarithmic with respect to the
number of items in the list. Therefore, the binary search is 𝑂(log 𝑛).

Searching

CS700 13

Computer Science, CMU

Binary Search: Analysis of Algorithm (Cont.)
• Even though a binary search is generally better than a sequential search, it is

important to note that for small values of 𝑛, the additional cost of sorting is
probably not worth it.

• In fact, we should always consider whether it is cost effective to take on the
extra work of sorting to gain searching benefits.
• If we can sort once and then search many times, the cost of the sort is not

so significant.
• However, for large lists, sorting even once can be so expensive that

simply performing a sequential search from the start may be the best
choice.

Searching

CS700 14

Computer Science, CMU

Hashing
• A data structure that can be searched in 𝑂(1) time is Hashing.
• The hash function will take any item in the collection and return an

integer in the range of slot names, between 0 and 𝑚 − 1, where 𝑚 is
number of slots.

• Assume that we have the set of integer items 54, 26, 93, 17, 77, and 31.
• Our first hash function, sometimes referred to as the “remainder

method,” simply takes an item and divides it by the table size,
returning the remainder as its hash value (ℎ(item) = item%11).

• Once the hash values have been computed, we can insert each item into
the hash table at the designated position.

Searching

CS700 15

Figure 5.5: Hash Table with Six Items

We have 11 slots (0-10)

Computer Science, CMU

Hashing: Example
• ℎ(item) = item%𝑚
• ℎ(item) = item%11

Searching

CS700 16

Figure 5.5: Hash Table with Six Items

We have 11 slots (0-10)

Item Hash Value

54 10

26 4

93 5

17 6

77 0

31 9

Table 5.4: Simple Hash Function Using Remainders

Computer Science, CMU

Hashing: Collision
• According to the hash function, two or more items would need to

be in the same slot. This is referred to as a collision (it may also
be called a “clash”).

• Collisions create a problem for the hashing technique.

• For example, if we have a new item 44,
• It would have a hash value of 0 (44%11 == 0).

• Slot 0 is already stored 77, now we have a problem

Searching

CS700 17

Computer Science, CMU

Hashing: Hash Function
• Given an arbitrary collection of items, there is no systematic way to construct

a perfect hash function, maps each item into a unique slot.
• If we know the items and the collection will never change, then it is possible to

construct a perfect hash function.
• One way to always have a perfect hash function is to increase the size of the

hash table so that each possible value in the item range can be
accommodated. This guarantees that each item will have a unique slot.
• Although this is practical for small numbers of items, it is not feasible when

the number of possible items is large.
• For example, if the items were nine-digit Social Security numbers, this method

would require almost one billion slots. If we only want to store data for a
class of 25 students, we will be wasting an enormous amount of memory.

Searching

CS700 18

Computer Science, CMU

Hashing: Hash Function (Cont.)
• To minimizes the number of collisions, distributes the items in the hash table.

• Folding Method
• Mid-square Method

• Folding Method:
• Divide the item into equal-size pieces (the last piece may not be of equal size).
• These pieces are then added together to give the resulting hash value.
• For example, if our item was the phone number 436-555-4601,

• We would take the digits and divide them into groups of 2 (43, 65, 55, 46, 01).
• After the addition, 43 + 65 + 55 + 46 + 01, we get 210.
• If we assume our hash table has 11 slots, then we need to perform the extra step of dividing by 11

and keeping the remainder.
• In this case 210%11 is 1, so the phone number 436-555-4601 hashes to slot 1.

• Some folding methods go one step further and reverse every other piece before the addition.
For the above example, we get 43 + 56 + 55 + 64 + 01 = 219 which gives 219%11 = 10.

Searching

CS700 19

Computer Science, CMU

Hashing: Hash Function (Cont.)
• Mid-square Method:

• We first square the item, and then extract some portion of the resulting digits.
• For example, if the item were 44, we would first compute 442 = 1, 936.
• By extracting the middle two digits, 93, and performing the remainder step, we get 5 (93%11).

Table 5.5: Comparisons of Remainder and Mid-Square Methods

Searching

CS700 20

Item Remainder Mid-Square

54 (54%11) = 10 3

26 4 7 ?

93 5 9

17 6 8 ?

77 0 4

31 9 6 ?

542 = 2916, 91%11 = 3

Computer Science, CMU

Hashing: Hash Function for String
• We can make use of ordinal value of a character, ord(c)
• ord(c): Given a string representing one Unicode character, return an integer

representing the Unicode code point of that character.
• For example, ord('a') returns the integer 97
• and ord('€') (Euro sign) returns 8364.
• This is the inverse of chr().  chr(8364) = '€‘

Example: “cat”
• Take these three ordinal values, add them up, and use the remainder method

to get a hash value

Searching

CS700 21

https://docs.python.org/3/library/functions.html#ord

Computer Science, CMU

Hashing: Hash Function for String (Cont.)
• Implementation (1)

• The code below shows a function called hash that takes a string and a
table size

• and returns the hash value in the range from 0 to table_size – 1.

Searching

CS700 22

def hash(a_string, table_size):
sum = 0
for pos in range(len(a_string)):

sum = sum + ord(a_string[pos])

return sum % table_size

Computer Science, CMU

Hashing: Hash Function for String (Cont.)
• Implementation (2)

• It is interesting to note that when using this hash function, anagrams will
always be given the same hash value. (cinema, iceman)

• To remedy this, we could use the position of the character as a weight.
• The modification to the hash function is left as an exercise.

Searching

CS700 23

Figure 5.7: Hashing a String Using Ordinal Values with Weighting

Computer Science, CMU

Hashing: Collision Resolution
• Collision Resolution: When two items hash to the same slot, we must have a

systematic method for placing the second (collision) item in the hash table.
• Try to find another open slot to hold the item that caused the collision, open

addressing.
• Linear Probing: find open slot sequentially, slot by slot, until we find an open position

• Disadvantage:
• The tendency (การโน้มเอยีงไปสู)่ for clustering; items become clustered in the table.

ขอ้มลูมแีนวโน้มทีจ่ะไปกรองอยูร่วมกนั
• How to solve the clustering:

• We skip slots, thereby more evenly distributing the items that have caused collisions.
• This will potentially reduce the clustering that occurs.
• Figure 5.10 (Slide No. 27) shows the items when collision resolution is done with a “plus 3”

probe. This means that once a collision occurs, we will look at every third slot until we find
one that is empty.

• The general name for this process of looking for another slot after a collision is rehashing.

Searching

CS700 24

Computer Science, CMU

Hashing: Collision Resolution (Cont.)
• Linear Probing: Steps

Searching

CS700 25

Next: 44, 44%11 = 0, มี 77 แลว้ หา Slot ว่างถดัจากค่า Hash Value ดงันัน้ได้ Slot 1

Next: 55, 55%11 = 0, มี 77 แลว้ หา Slot ว่างถดัจากค่า Hash Value ดงันัน้ได้ Slot 1 ไมว่่าง (มี 44 อยู)่ ดงันัน้ ได้ Slot 2

Next: 20, 20%11 = 9, มี 31 แลว้ หา Slot ว่างถดัจากค่า Hash Value เน่ืองจาก Slot 10 ไมว่่าง
ดงันัน้ วกกลบัไป 0, 1, 2 กไ็มว่่าง สดุทา้ยได้ Slot 3

Figure 5.8: Collision Resolution with Linear Probing

44

44 55

Computer Science, CMU

Hashing: Collision Resolution (Cont.)
• Linear Probing: Reduce the Clustering

Searching

CS700 26

Next: 44, 44%11 = 0, มี 77 แลว้ ดงันัน้ Rehash = (0+3)%11 = 3 ว่าง ดงันัน้ได้ Slot 3

Next: 55, 55%11 = 0, มี 77 แลว้ Rehash = (0+3)%11 = 3 ไมว่่าง, Rehash = (3 + 3)%11 = 6 ไมว่่าง,
Rehash = (6 +3)%11 = 9 ไมว่่าง, Rehash = (9 +3)%11 = 1 ว่าง ได้ Slot 1

Next: 20, 20%11 = 9, มี 31 แลว้ Rehash = (9+3)%11 = 1 ไมว่่าง, Rehash = (12 + 3)%11 = 4 ไมว่่าง,
Rehash = (15 +3)%11 = 7 ว่าง ได้ Slot 7

Figure 5.10: Collision Resolution Using “Plus 3”

44

4455

Computer Science, CMU

Hashing: Collision Resolution
• Rehashing: a process of looking for another slot after a collision.

new_hash_value = rehash(old_hash_value)
where rehash(pos) = (pos + 1)%size_of_table.
The “plus 3” rehash can be defined as

rehash(pos) = (pos + 3)%size_of_table.
In general,

rehash(pos) = (pos + skip)%sizeoftable.

• The size of the “skip” must be such that all the slots in the table will eventually be
visited. Otherwise, part of the table will be unused.
• To ensure this, it is often suggested that the table size be a prime number.
• This is the reason we have been using 11 in our examples.

Searching

CS700 27

Computer Science, CMU

Hashing: Collision Resolution
• Quadratic Probing:

• Instead of using a constant “skip” value, we use a rehash function that
increments the hash value by 1, 3, 5, 7, 9, and so on.

• This means that if the first hash value is ℎ, the successive values are
ℎ+1, ℎ+4, ℎ+9, ℎ+16, and so on.

• In other words, quadratic probing uses a skip consisting of successive
perfect squares.

Searching

CS700 28

Figure 5.11: Collision Resolution with

Quadratic Probing

44 = (0+1)%11 = 1 วา่ง
55 = (0+1)%11 = 1 ชน เพิม่เป็น (0+4)%11 = 3 ชน … รอบที่ 5 (0+52)%11 = 3

20 = (9+1)%11 = 10 ชน เพิม่เป็น (9+4)%11 = 2 วา่ง

Computer Science, CMU

Hashing: Collision Resolution
• Chaining: allows many items to exist at the same location.

• When collisions happen, the item is still placed in the proper slot of the
hash table.

• As more and more items hash to the same location, the difficulty of
searching for the item in the collection increases.

Searching

CS700 29

Computer Science, CMU

Hashing: Collision Resolution

Practice 1:
• Suppose you are given the following set of keys to insert into a hash

table that holds exactly 11 values:

113, 117, 97, 100, 114, 108, 116, 105, 99.

• Demonstrates the contents of the has table after all the keys have
been inserted using linear probing?

Searching

CS700 30

Computer Science, CMU

Hashing: Implementing the Map Abstract Data Type
Map Abstract Data Type

The structure is an unordered collection of associations between a
key and a data value (Dictionary in python is a solution).

The keys in a map are all unique so that there is a one-to-one
relationship between a key and a value.

Searching

CS700 31

Computer Science, CMU

Hashing: Implementing the Map Abstract Data Type
Map Abstract Data Type (Cont.)

Searching

CS700 32

• Map()
Create a new, empty map. It returns an empty map collection.

• put(key,val)
Add a new key-value pair to the map. If the key is already in
the map then replace the old value with the new value.

• get(key)
Given a key, return the value stored in the map or None otherwise.

• del
Delete the key-value pair from the map using a statement of the
form del map[key].

• len()
Return the number of key-value pairs stored in the map.

• in Return True for a statement of the form key in map, if the
given key is in the map, False otherwise.

Computer Science, CMU

Hashing: Implementing HashTable class
HashTable class

- Download HashTable class and testHashTable at 204700 web site

- Then run testHashTable.py, the results are

[77, 44, 55, 20, 26, 93, 17, None, None, 31, 54]

['bird', 'goat', 'pig', 'chicken', 'dog', 'lion', 'tiger', None, None, 'cow', 'cat']

Searching

CS700 33

Computer Science, CMU

Hashing: Analysis of Hashing
• The best case hashing would provide a 𝑂(1)

• For collision, searching depends on load factor, 𝜆.

𝜆 = number_of_items / table_size

• Therefore the worst case is 𝑂(𝜆).

Searching

CS700 34

Computer Science, CMU

• Bubble Sort

• Selection Sort

• Insertion Sort
• http://www.ee.ryerson.ca/~courses/coe428/sorting/bubblesort.html

• Shell Sort

• Merge Sort

• Quick Sort

Sorting

CS700 35

Download python code ของการ Sort

ทุกประเภทจาก Web รายวชิา

Computer Science, CMU

• Bubble Sort

Sorting

CS700 36

ต่อไปท า 26 – 20

- - -

สดุทา้ยเหลอืแค่ 2 ตวั คูห่น้า

Computer Science, CMU

• Bubble Sort: Analysis of Bubble Sort

Sorting

CS700 37

จ านวนครัง้ทีท่ า (n-1) + (n-2) + (n-3) + … + (n-(n-2)) + (n-(n-1)) บวกกนั (n-1) ครัง้
ประมาณการส าหรบัคา่ทีม่ากทีส่ดุ (n-1)*(n-1) = n2 – 2n + 1 ประมาณ O(n2)

Computer Science, CMU

Sorting: Selection Sort

CS700 38

Computer Science, CMU

Sorting: Selection Sort (Cont.)

CS700 39

ท า n รอบ แต่ละรอบ หา คา่ max เปรยีบเทยีบ (n-1) … 1 ดงันัน้ ยงัคง O(n2)

Computer Science, CMU

Sorting: Insertion Sort

CS700 40

Computer Science, CMU

Sorting: Insertion Sort

CS700 41

Still O(n2)

Computer Science, CMU

Sorting: Shell Sort

CS700 42

Figure 5.18: A Shell Sort with

Increments of Three

Computer Science, CMU

Sorting: Shell Sort (Cont.)

CS700 43

Figure 5.20: Shell Sort: A Final Insertion Sort with Increment of 1

More Example: http://www.tutorialspoint.com/data_structures_algorithms/shell_sort_algorithm.htm

Computer Science, CMU

Sorting: Merge Sort

CS700 44

Figure 5.22: Splitting the List in a Merge Sort

Computer Science, CMU

Sorting: Merge Sort (Cont.)

CS700 45

Figure 5.23: Lists as They Are Merged Together

More Example: http://www.tutorialspoint.com/data_structures_algorithms/merge_sort_algorithm.htm

Computer Science, CMU

Sorting: Quick Sort

CS700 46

Figure 5.24: The First Pivot Value for a Quick Sort

Computer Science, CMU

Sorting: Quick Sort (Cont.)

CS700 47

Figure 5.26: Completing the Partition Process to Find the

Split Point for 54

Computer Science, CMU

Sorting: Quick Sort (Cont.)

CS700 48

