
204700 – 1/2559

DATA STRUCTURE AND PROGRAMMING LANGUAGES

โครงสรา้งขอ้มลูและภาษาโปรแกรม

Programming with Python – Part I

Adapted/Assembled by Areerat Trongratsameethong

Objectives

• Getting Help

• Syntax

• Arithmetic Expression

• Variables

• Data Types

• String

• Built-In Function

• Input Function

• Flow Control Statement

2

Getting Help

• Help in Python is always available right in the interpreter.

• If you want to know how an object works, all you have to do is call

– help(<object>)

• Also useful are

– dir(), which shows you all the object's methods,

– <object>.__doc__, which shows you its documentation string

3

>>> help(5) # Help on int object
>>> dir(5)
['__abs__', '__add__', ...]
>>> abs.__doc__
#'abs(number) -> number Return the absolute value of the argument.'

Tutorial - Learn Python in 10 minutes: https://www.stavros.io/tutorials/python/

Syntax
• Syntax

– Python has no mandatory statement termination characters and blocks are specified by

indentation.

• Indent to begin a block,

• Dedent to end one.

– Statements that expect an indentation level end in a colon (:).

– Comments start with the pound (#) sign and are single-line, multi-line strings are used for multi-

line comments.

– Values are assigned (in fact, objects are bound to names) with the equals sign ("="),

– Equality testing is done using two equals signs ("==").

– Increment/decrement values using the += and -= operators respectively by the right-hand amount.

This works on many datatypes, strings included.

– Multiple variables can be used on one line.

4

>>> myvar = 3
>>> myvar += 2
>>> myvar
5
>>> myvar -= 1
>>> myvar
4

"""This is a multiline comment.
The following lines concatenate the two strings."""

>>> mystring = "Hello"
>>> mystring += " world."
>>> print (mystring)

This swaps the variables in one line(!). It doesn't violate strong typing because
values aren’t actually being assigned, but new objects are bound to the old names.

>>> myvar = "Hello"
>>> mystring = "World"
>>> myvar, mystring = mystring, myvar
>>> print(myvar + " " + mystring)

Arithmetic Expressions

• Mathematical Operators

• Python is like a calculator: type an expression and it tells you the value.

5

>>> 2 + 3 * 5
17

+ Addition
‐ Subtraction // Integer division
* Multiplication ** Exponentiation
/ Division % Modulo (remainder)

Arithmetic Expressions

• Mathematical Operators (Cont.)

• Order of Evaluation

For more Python Operator Precedence:

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

– Use parentheses to force alternate precedence

5 * 6 + 7 ≠ 5 * (6 + 7)
5 * 10 % 4 = (5 * 10) % 4
2 + 3 + 4 = (2 + 3) + 4
2 ** 3 ** 4 = 2 ** (3 ** 4)

6

Variables

• In Python programming, a variable is a name you give a
value.

• In Python we give a name to a value using an assignment
statement:

>>> a = 5 # Assignment Statement
>>> a # Expression
5 # Python’s Response
>> > b = 2 * a
>>> b
10

7

5a:

Computer
Memory

10b:

Variables

• Variable Name
– All variable names must start with a letter

(lowercase recommended).
– The remainder of the variable name (if any) can

consist of any combination of uppercase letters,
lowercase letters, digits and underscores (_).

– Identifiers in Python are case sensitive.
• Example: Value is not the same as value .

8

Data Types

• Data Types

– Integers (int)

– Floating Point (float)

– String (str)

– Boolean (bool)

For more information, please see: https://docs.python.org/3.1/library/stdtypes.html

9

- Integer Division in Python3:

7 / 2 equals 3.5
7 // 2 equals 3
7 // 2.0 equals 3.0
7.0 // 2 equals 3.0
‐7 // 2 equals -4

- Beware! // rounds down to smaller number, not towards zero

Data Types

• Data Types (Cont.)
• The data structures available in python are

– Lists, Tuples and Dictionaries
• Lists are like one-dimensional arrays (but you can also have lists of other lists)
• Dictionaries are associative arrays (a.k.a. hash tables)
• Tuples are immutable one-dimensional arrays

– Python "arrays" can be of any type, so you can mix e.g. integers, strings, etc in lists/dictionaries/tuples.
• The index of the first item in all array types is 0.
• Negative numbers count from the end towards the beginning, -1 is the last item.
• Variables can point to functions.

– Sets are available in the sets library (but are built-in in Python 2.5 and later).

10

>>> sample = [1, ["another", "list"], ("a", "tuple")]
>>> mylist = ["List item 1", 2, 3.14]
>>> mylist[0] = "List item 1 again" # We're changing the item.
>>> mylist[-1] = 3.21 # Here, we refer to the last item.
>>> mydict = {"Key 1": "Value 1", 2: 3, "pi": 3.14}
>>> mydict["pi"] = 3.15 # This is how you change dictionary values.
>>> mytuple = (1, 2, 3)
>>> myfunction = len
>>> print (myfunction(mylist))
3

Data Types

• Data Types (Cont.)

• We can access array ranges using a colon (:)
– Leaving the start index empty assumes the first item,

– Leaving the end index assumes the last item.

– Negative indexes count from the last item backwards (thus -1 is the last item)

11

>>> mylist = ["List item 1", 2, 3.14]
>>> print (mylist[:])
['List item 1', 2, 3.1400000000000001]
>>> print (mylist[0:2])
['List item 1', 2]
>>> print (mylist[-3:-1])
['List item 1', 2]
>>> print (mylist[1:])
[2, 3.14]
Adding a third parameter, "step" will have Python step in
N item increments, rather than 1.
E.g., this will return the first item, then go to the third and
return that (so, items 0 and 2 in 0-indexing).
>>> print mylist[::2]
['List item 1', 3.14]

String
• String
• Strings can use either single or double quotation marks, and you can have quotation

marks of one kind inside a string that uses the other kind (i.e. "He said 'hello'." is valid).
• Multiline strings are enclosed in triple double (or single) quotes (""").
• Python supports Unicode out of the box, using the syntax u"This is a unicode string".
• To fill a string with values:

– Use the % operator and a tuple.
– Each %s gets replaced with an item from the tuple, left to right, and you can also use dictionary

substitutions.

12

>>> print("Name: %s\nNumber: %s \nString: %s" % ("Type your name here", 3, 3 * "-"))
Name: Type your name here
Number: 3
String: ---

>>> strString = """This is
a multiline string."""
>>> print(strString)
This is
a multiline string.

>>> print ("This %(verb)s a %(noun)s." % {"noun": "test", "verb": "is"})
This is a test.

>>> strString = "He said 'hello'."
>>> print(strString)
He said 'hello'.

Built-In Functions

• Lots of math stuff, e.g., sqrt, log, sin, cos

• math is a predefined module of functions (also called methods)

that we can use without writing their implementations.

import math
r = 5 + math.sqrt(2)
alpha = math.sin(math.pi/3)

13

For more details, please see: https://docs.python.org/3/library/functions.html

Input Function

• Input can come in various ways, for example from
– database,

– another computer,

– mouse clicks
– Keyboard: Python provides the function input(). input has an optional

parameter, which is the prompt string.

14
For more details, please see: https://docs.python.org/3/library/functions.html

Example of Input Function

>>> person = input('Enter your name: ')
Enter your name: Jack
>>> print("Hello", person)
Hello Jack
>>> print('Hello ', person, '!', sep=' ') # sep = separater
Hello Jack !
>>> print('Hello ', person, '!', sep='|')
Hello |Jack|!

Flow Control Statement

• Flow control statements are: If, for, and while

• Simple Condition and if Statement

15Reference: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/ifstatements.html

Simple Conditions

print(2 < 5) # True
print(3 > 7) # False
x = 11
print(x > 10) # True
print(2 * x < x) # False
print(type(True)) # <class 'bool'>

Example of Simple if Statements

weight = float(input("How many pounds does your suitcase weigh? "))
if weight > 50:

print("There is a $25 charge for luggage that heavy.")
print("Thank you for your business.")

The general Python syntax for a simple
if statement is

if condition :
indentedStatementBlock>

If the condition is true, then do the
indented statements. If the condition
is not true, then skip the indented
statements.

Another Example of Simple if Statement

if balance < 0:
transfer = -balance
transfer enough from the backup account:
backupAccount = backupAccount - transfer
balance = balance + transfer

Example of if-else Statements

temperature = float(input('What is the temperature? '))
if temperature > 70:

print('Wear shorts.')
else:

print('Wear long pants.')
print('Get some exercise outside.')

Flow Control Statement

• Flow control statements (Cont.)

• if-else Statement

16

The general Python if-else syntax is

if condition :
indentedStatementBlockForTrueCondition

else:
indentedStatementBlockForFalseConditionif-else Statements

More Conditional Expressions

Flow Control Statement

• Flow control statements (Cont.)

• for Statement

17

>>> words = ['cat', 'window', 'defenestrate']
>>> for w in words:

print(w, len(w))

cat 3
window 6
defenestrate 12

>>> for w in words[:]: # Loop over a slice copy of the entire list.
if len(w) > 6:

words.insert(0, w)

>>> words
['defenestrate', 'cat', 'window', 'defenestrate']
>>>

Reference: https://docs.python.org/3/tutorial/controlflow.html

Flow Control Statement

• Flow control statements (Cont.)

• For Statement: the range() Function

18

>>> for i in range(5):
print(i)

0
1
2
3
4

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):

print(i, a[i])

0 Mary
1 had
2 a
3 little
4 lamb

>>> list(range(5))
[0, 1, 2, 3, 4]
>>> print(list(range(5)))
[0, 1, 2, 3, 4]

Flow Control Statement

• Flow control statements (Cont.)

• break and continue Statements, and else Clauses on Loops

19

>>> for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
print(n, 'equals', x, '*', n//x)
break

else:
loop fell through without finding a factor
print(n, 'is a prime number')

2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

Flow Control Statement

• Flow control statements (Cont.)

• break and continue Statements, and else Clauses on Loops

20

>>> for num in range(2, 10):
if num % 2 == 0:

print("Found an even number", num)
continue

print("Found a number", num)

Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

Flow Control Statement

• Flow control statements (Cont.)
• pass Statements: The pass statement does nothing. It can be used when

a statement is required syntactically but the program requires no action.

21

rangelist = range(10)
print (rangelist)

for number in rangelist:
Check if number is one of the numbers in the tuple.
if number in (3, 4, 7, 9):

"Break" terminates a for without executing the "else" clause.
break

else:
"Continue" starts the next iteration of the loop.
It's rather useless here, as it's the last statement of the loop.
continue

else:
The "else" clause is optional and is executed only if the loop didn't "break".
pass # Do nothing

if rangelist[1] == 2:
print ("The second item (lists are 0-based) is 2")

elif rangelist[1] == 3:
print ("The second item (lists are 0-based) is 3")

else:
print ("Dunno")

while rangelist[1] == 1:
pass

Flow Control Statement

• Flow control statements (Cont.)
• while Statement

22

A while loop generally follows the pattern of the successive modification loop
introduced with for-each loops:

initialization
while continuationCondition :

do main action to be repeated
prepare variables for the next time through the loop

Example of while loop

Prints out 0,1,2,3,4

count = 0
while count < 5:

print (count)
count += 1 # This is the same as count = count + 1

	�204700 – 1/2559�DATA STRUCTURE AND PROGRAMMING LANGUAGES�โครงสร้างข้อมูลและภาษาโปรแกรม�
	Objectives
	Getting Help
	Syntax
	Arithmetic Expressions
	Arithmetic Expressions
	Variables
	Variables
	Data Types
	Data Types
	Data Types
	String
	Built-In Functions
	Input Function
	Flow Control Statement
	Flow Control Statement
	Flow Control Statement
	Flow Control Statement
	Flow Control Statement
	Flow Control Statement
	Flow Control Statement
	Flow Control Statement

