Problem Solving using

Stack, Queue, and Deque

Computer Science, CMU | CS700

Problem Solving using Stack

e Write a function rev_string(my_str) that uses a stack to
reverse the characters in a string

import Stack class Stack:
def init (self):
def rev_string(my str): self.items = []

myStr = Stack.Stack()
def is _empty(self):
print("The Input String is: + my_str) return self.items == []
for index in range(len(my_str)):
myStr.push(my str[index]) def push(self, item):
self.items.insert(0, item)

rev_str = ""
for i in range(len(my str)): def pop(self):
rev_str += myStr.pop() return self.items.pop(9)

+ rev_str) def peek(self):
return self.items[0]

print("The Reversed String is:

rev_string("Hello World")
print() def size(self):
rev_string("0123456789") return len(self.items)

Computer Science, CMU = CS700 2

Problem Solving using Stack

e Simple Balance Parentheses
e Arithmetic expressions such as:
(5+6)* (7 +8)4+ 3)

e Balanced parentheses: L6az39LaULdaABIN9AUT
~ = =Y, 1 2R (=Y Qq: ~ 1
218U 1We-Da Mwmsg anad U lananaais 29 audaue
am"’nz@;ﬂ"’maLSULﬁ@ﬁlﬂé’ﬁumﬂﬁq@

Most recent open matches first close

v

(|) i ()) [) |

\ ,//'

First open may wait until last close

Figure 3.4: Matching Parentheses

Computer Science, CMU = CS700 3

Problem Solving using Stack

e Simple Balance Parentheses (Cont.)

° @”’aazm'mﬁuﬁﬁ%mﬂ@j

Tionfieg Ailainning
(0000) ((((C(0))
(((0))) ()
(O(0))()) (OO0

o L319EATIVHAVALNILS?

Computer Science, CMU = CS700

Problem Solving using Stack

e Simple Balance Parentheses (Cont.)

import Stack #import the Stack class as previously defined

def par_checker(symbol string):
s = Stack.Stack()
balanced = True
index = ©
while index < len(symbol string) and balanced:
symbol = symbol string[index]
if symbol == "(":
s.push(symbol)
else:
if s.is_empty():
balanced = False
else:

s.pop()

index = index + 1

if balanced and s.is_empty():
return True

else:
return False

print(par_checker(" (((
rint(par_checker(.
E %W fﬁiut String (‘&(%

Coinputier Science, Civiu + C3700

Problem Solving using Stack

e Balance Symbols

f par_checker (symbol_ string):
8 = Stack.Stackl)
balanced =
index = 0
while index < len(symbol_string)

True

11|:':'_11..
L -

s.popl)

if not matches (top,
balanced = False

index = index + 1

ance

i

and s.is_empty():

[

ba

[8
(B}
[
[o s |

=

|1
ih

it
=

i1

ru

i
iy}
i

H

i
i1
o
Pt
|
)
:.LI
’_l
[}
M

symbol) :

and balanced:

def matches (open, close):
opens = " ([{"
closes = ")]}"

return opens.index (open)

print (par_checker (' {{ ([]
print (par_checker ('[{()]"))

[1})})]

closes.index (close

S 5

Problem Solving using Stack

e Converting Decimal Numbers to Binary Numbers

233/ 2=116 rem=1
Y A
1M6/2=58 rem=0 o -
°8//2=29 rem=0 £ 2
-y E z
29//2=14 rem=1 o =
Y f - %
14//2=7 rem=0 2 =
Y Q.
TH2=3 rem=1 ¥
Y
3MM2=1 mrem=1
Y

1/2=0 rem=1
e How to?

Computer Science, CMU = CS700 7

Problem Solving using Stack

e Operator Precedence

e 13192 UDNAANNILADS LADL191597 tib Arithmetic
Expression 1319711 Arithmetic Operation 1
Naw L1

A+B<C > (A+(B*C))
A+B+C =2 ((A+B)+C)

Computer Science, CMU = CS700 8

Problem Solving using Stack

e Infix Prefix Postfix
o U
2 LINFATNTIIANILAND Expression 16\ 3 ;J‘]JLL?J‘]J

¢ Infix: operator agl:iz‘wi'm Operand

] ' operator Liluaas Operand
o Prefix: operator agina Operand P g

panaglnatuingn

¢ Postfix: operator agl:‘m% Operand

Infix Expression Prefix Expression Postfix Expression
A+ B +AB AB+
A+B=«C +Ax BC ABC * +

Table 3.2: Examples of Infix, Prefix, and Postfix

Infix Expression Prefix Expression Postfix Expression
(A4+ B)=C * + ABC AB + Cx

Table 3.3: An Expression with Parentheses

Computer Science, CMU = CS700 9

Problem Solving using Stack

Postfix

e Conversion of Infix Expressions to Prefix and

e MIBYIIAIAUNIINT Operation N néfaa

Infix Expression
A+B+«C+ D
(A+ B)* (C+ D)
A« B+C=x=D
A+B+C+D

Prefix Expression Postfix Expression

++ Ax BCD ABC « +D+
x* + AB+CD AB +CD + %
++x AB«CD AB xCD % +
+++ABCD AB +C + D+

Table 3.4: Additional Examples of Infix, Prefix, and Postfix

Computer Science, CMU = CS700

Problem Solving using Stack

e Conversion of Infix Expressions to Prefix and

Postfix (Cont.)
¢ How to move operator? (A + (B * C))
’.'"'_"'H\
L A 4 i B * C))
L
Figure 3.7: Moving Operators to the Left for Prefix Notation)
o
LA A | B * C))
e -

Figure 3.6: Moving Operators to the Right for Postfix Notation)

Computer Science, CMU = CS700 11

Problem Solving using Stack

e Conversion of Infix Expressions to Prefix and
Postfix (Cont.)

(A+B)*C-(D-E)*(F+G)

Prefix Postfix

+AB | |-DE | |+FG AB+ | |DE- | |FG+
x|+AB |C | |4|-DE ||+FG AB+ |C* | | |DE- ||FG+
|+AB |C |l «|-DE |[|+FG AB+ |C ||| DE- ||FG+ |*

Computer Science, CMU = CS700

Problem Solving using Stack

I~

fad

e Postfix Order Algorithm

. Create an empty stack called op_stack for keeping operators. Create an empty list for

output.

Convert the input infix string to a list by using the string method split.

. Scan the token list from left to right.

* If the token 1s an operand, append it to the end of the output list.
* If the token 1s a left parenthesis, push it on the op_stack.

 If the token 1s a right parenthesis, pop the op_stack until the corresponding left
parenthesis 1s removed. Append each operator to the end of the output list.

* If the token is an operator, *, /, +, or —, push it on the op_stack. However, first
remove any operators already on the op_stack that have higher or equal precedence
and append them to the output list.

When the input expression has been completely processed, check the op_stack. Any
operators still on the stack can be removed and appended to the end of the output list|

Computer Science, CMU = CS700 13

Problem Solving using Stack

e Postfix Order Algorithm (Cont.)

A*B+4L*"D

A * B i & " D

A B " = D ' -
AB*CD*®* 4

Figure 3.9: Converting A * B + C * D to Postfix Notation)

Computer Science, CMU = CS700 14

Problem Solving using Stack

e Postfix Order Algorithm: Example 1

A*B+C*D

Step1: A Output List: A op_stack:
Step2: * Output List: A op_stack: *
Step3: B Output List: AB op_stack: *
Stepd4: + Output List: AB* op_stack: +
Step5: C Output List: AB*C op_stack: +
Step6:* OutputList: AB*C op_stack: +*
Step7: D OutputList: AB*CD op_stack: + *
Step8: OutputList: AB*CD* op _stack: +*

Step9: Output List: AB * C D * +| op_stack:

Computer Science, CMU = CS700 15

Problem Solving using Stack

e Postfix Order Algorithm

Step1: (
Step2: A
Step3: +
Step4: B
Steps:)
Stepb6: *
Step7: (

Step8: C

Step9: +

Step10: D

Step11:)
Step12:

Output List:

Output List:
Output List:

Output List
Output List
Output List
Output List
Output List
Output List
Output List
Output List

Output List:

Computer Science, CMU = CS700

: Example 2| (A+B)*(C+D)
op_stack: (

A op_stack: (

A op_stack: (+
:AB op_stack: (+
:AB+ op_stack:
:AB+ op_stack: *
:AB+ op_stack: * (
:AB+C op_stack: * (
:AB+C op_stack: * (+
:AB+CD op_stack: * (+
:AB+CD+ op_stack: *

AB+CD+* | op_stack:

16

Problem Solving using Stack

e Infix to Postfix: Code

inedad |

import Stack # As previocusly defi
. _ _)) for token in token_list:

e tafam. oo pasciex| It axpe) ¢ if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in
prec = {} "0123456789":
prec["i"] =~ o postfix_ list.append(token)
pree|®*/"] = 3 elif token == '"(':

L1} L1} e

prec["+"] = 2 op_stack.push (token)
prec["-"] = 2 elif token == ')':
pEDe] VIRl = 4 top_token = op_stack.pop ()
op_stack = Stack.Stack() while top token != '(':
postflellst N l% _ postfix_list.append(top_token)
token list = infix expr.split() top_token = op_stack.pop ()

else:
while (not op_stack.is_empty()) and \
(prec|[op_stack.peek ()] >= prec|[token]):
postfix list.append(op_stack.pop())
op_stack.push (tcken)

while not op_stack.is_empty():
postfix_list.append(op_stack.pop())
return " ".join(postfix list)

myString = "(345 + 456) * 2".split()
print(myString)
[I(I, 345I, I+I, '456', l)l, l*l, l2l]

Computer Science, CMU = CS700 17

Problem Solving using Stack

@ Postfix Evaluation: Code

import Stack # As previously defined

def postfix_eval(postfix_expr):
operand_stack = Stack.Stack()
token list = postfix _expr.split()
for token in token list:
if token in "©123456789":
operand_stack.push(int(token))

def do _math(op, opl,

if op == "*":

return
elif op ==
return
elif op ==
return
else:
return

print(postfix_eval('7 8 + 3 2 + /"))

opl

II/lI:

opl

+
opl

opl

else:
> - operand2 = operand_stack.pop()
op)- operandl = operand_stack.pop()
result = do_math(token, operandl, operand2)
* op2 operand_stack.push(result)
return operand_stack.pop()

/ op2
+ op2

, Practice: Implementation
- Op

- Infix to Prefix
- Prefix Evaluation

Computer Science, CMU = CS700 18

Problem Solving using Queue

e Hot Potato

° 1%L@ﬂ£lul,f|%’3<]ﬂaw waslwddaiuessYaulvauiitusald
Lsaﬂe] faaaNTRLe (81992 mm"l,@) wuﬂﬁaamlm Ak
HUNLYNaaNINA

After 5 passes,

Brad 15 eliminated pass to next person

until predefined counting constant and 5o on

Figure 3.13: A Six Person Game of Hot Potato)

Computer Science, CMU = CS700

Problem Solving using Queue

e Hot Potato: Queue Implementation

rear —# Brad Kent Jane Susan David Bill —= frp

dequeue

ENquele Go to the rear ‘_...---F""'#

(Pass the potato)

I'—'I

rear —p= [yl Brad Kent Jane Susan David —# front

"—'I

Figure 3.14: A Queue Implementation of Hot Potato)

Computer Science, CMU = CS700 20

Problem Solving using Queue

e Hot Potato: Forward Potato
After forward potato 5 times

YT TATA

rear —= || Brad Kent Jane Swusan David —# front

After forward potato 6 times

rear ——®» David Bill Brad Kent Jane Susan —» front

Computer Science, CMU = CS700 21

Problem Solving using Queue

e Hot Potato: Code

import Queue # As previously defined

def hot potato(name_list, num):
sim_queue = Queue.Queue()

for name in name_list:
sim_queue.enqueue(name)

while sim_queue.size() > 1:
for i in range(num):
sim_queue.enqueue(sim_queue.dequeue())

sim_queue.dequeue()
return sim_queue.dequeue()

print(hot_potato(["Bill", "David", "Susan", "3Jane", "Kent", "Brad"], 7))

Computer Science, CMU = CS700 22

Problem Solving using Queue

Lab Computers

p lask task task task task

printing tasks in print queusa

Figure 3.15. Computer Science Laboratory Printing Queue)

Computer Science, CMU = CS700

23

Problem Solving using Queue

e Simulation: Printer Task
« NMI91809N15LTNA1FATDY Printer 209%709 Lab
o BNANBILGATAK NN L1229 1-20 Bt lagmIguaILa
o IHLARZIWIN L31F1NTD simulate 31 print task Lag
ﬂ'ﬁﬂ&J@l')La?.l
. FOTI aamnmwaaﬂuﬂmmﬁﬁn ‘) & Tefhae
i Lﬂiad Printer
* Task fiNN30191A7

a\ a\ 6
* A lwnISNAN

Computer Science, CMU = CS700 24

Problem Solving using Queue

e Simulation: Printer Task (Cont.)

Algorithm 1% l4n15 Simulation Print Task

1. Create a queue of print tasks. Each task will be given a timestamp upon its arrival. The queue is

empty to start.

2. For each second (currentSecond):
o Does a new print task get created? If so, add it to the queue with the currentSecond as the

timestamp.
o |fthe printer is not busy and if a task is waiting,
» Remove the next task from the print queue and assign it to the printer.
» Subtract the timestamp from the currentSecond to compute the waiting time for that

task.
» Append the waiting time for that task to a list for later processing.

» Based on the number of pages in the print task, figure out how much time will be

required.
o The printer now does one second of printing if necessary. It also subtracts one second from

the time required for that task.
o If the task has been completed, in other words the time required has reached zero, the printer

is no longer busy.
3. After the simulation is complete, compute the average waiting time from the list of waiting times

generated. http://interactivepython.org/runestone/static/pythonds/BasicDS/SimulationPrintingTasks.html

Computer Science, CMU = CS700

25

Problem Solving using Queue

e Simulation: Printer Task Implementation
e To design this simulation we will create classes for the
three real-world objects described above:
e Printer: track whether it has a current task
e Task: represent a single printing task

¢ PrintQueue: manage print queue

If there are 10 students in the lab and each prints twice, then there are 20 print tasks per hour on average.
What is the chance that at any given second, a print task is going to be created? The way to answer this is
to consider the ratio of tasks to time. Twenty tasks per hour means that on average there will be one task
every 180 seconds:

20 tasks 1 hour 1 minute 1 task
1 hour 60 minutes 60 seconds 180 seconds

For every second we can simulate the chance that a print task occurs by generating a random number
between 1 and 180 inclusive. If the number is 180, we say a task has been created. Note that it is possible
that many tasks could be created in a row or we may wait quite a while for a task to appear. That is the
nature of simulation. You want to simulate the real situation as closely as possible given that you know
general parameters.

Computer Science, CMU = CS700 26

Problem Solving using Queue

e Simulation: Printer Task Implementation (Cont.)

Class Printer:

« Track whether it has a current task

« If it does, then it is busy (lines 13—17) and the amount of time
needed can be computed from the number of pages in the task.

« The constructor will also allow the pages-per-minute setting to be
initialized.

« The tick method decrements the internal timer and sets the printer

to idle (line 11) if the task is completed.

Computer Science, CMU = CS700 27

Problem Solving using Queue

e Simulation: Printer Task Implementation (Cont.)

class Printer:
def __init__(self, ppm):
self.pagerate = ppm
self.currentTask = None
self.timeRemaining = @

def tick(self):
1f self.currentTask != None:
self.timeRemaining = self.timeRemaining - 1
1f self.timeRemaining <= @:
self.currentlTask = None

def busy(self):
1f self.currentlask != None:
return True
else:
return False

def startNext(self,newtask):
self.currentTask = newtask

self.timeRemaining = newtask.getPages() * 6@/self.pagerate

Computer Science, CMU = CS700 28

Problem Solving using Queue

e Simulation: Printer Task Implementation (Cont.)

Class Task:

« Represent a single printing task.
« When the task is created, a random number generator will provide a

>>> 1mport random

|ength from 1 to 20 pages >>> random.randrange(1,21)

18
« We have chosen to use the randrange function from the random module.

« Each task will also need to keep a timestamp to be used for

computing waiting time. This timestamp will represent the time that

the task was created and placed in the printer queue.

« The waitTime method can then be used to retrieve the amount of time

spent in the queue before printing begins.

Computer Science, CMU = CS700 29

Problem Solving using Queue

e Simulation: Printer Task Implementation (Cont.)

Lmport random

class Task:
def __1init__(self,time):
self.timestamp = time
self.pages = random.randrange(l,21)

def getStamp(self):
return self.timestamp

def getPages(self):
return self.pages

def waitTime(self, currenttime):
return currenttime - self.timestamp

Computer Science, CMU = CS700 30

Problem Solving using Queue

e Simulation: Printer Task Implementation (Cont.)
Class printQueue:
« Manage Task Queue.
« A boolean helper function, newPrintTask, decides whether a new
printing task has been created.
« We have again chosen to use the randrange function from the random
module to return a random integer between 1 and 180.
« Print tasks arrive once every 180 seconds. By arbitrarily choosing 180
from the range of random integers (line 32), we can simulate this

random event.

« The simulation function allows us to set the total time and the

pages per minute for the printer.

Computer Science, CMU = CS700 31

Problem Solving using Queue

e Simulation: Printer Task Implementation (Cont.)

import Queue I
import Printer >>>for 1 in range(1@):
import random simulation(3600,5)
import Task
def simulation(numSeconds, pagesPerMinute): Average Wa?t 165.38 secs Z tasks re*a@n@ng.
Average Wait 95.07 secs 1 tasks remaining.
. : . Average Wait 65.05 secs Z tasks remaining.
labprlnter = clhenans el Average Wait 99.74 secs 1 tasks re*aining.
DP?”?Q“EQE = Queue.Queue() Average Wait 17.27 secs @ tasks remaining.
wartingtimes = || Average Wait 239.61 secs 5 tasks remaining.
Average Wait ¥5.11 secs 1 tasks remaining.
for currentSecond in range(numSeconds): Average Wait 48.33 secs @ tasks remaining.
Average Wait 39.31 secs 3 tasks remaining.
1f newPrintTask(): Average Wait 376.05 secs 1 tasks remaining.
task = Task(currentSecond) T
printQueue.enqueue(task) def newPrintTask():
num = random.randrange(1,181)
1f (not labprinter.busy()) and (not printQueue.isEmpty()): 1f num == 180:
nexttask = printQueue.dequeue() return True
waitingtimes.append(nexttask.waitTime(currentSecond)) else:
labprinter.startNext(nexttask) return False
labprinter.tick() for 1 in range(19):
simulation(3600,5)
averageWailt=sum(waitingtimes)/len(waitingtimes) i
print("Average Wait Secs tasks remaining."%(averageWait,printQueue.s
1ze()))

Computer Science, CMU = CS700

Problem Solving using Deque

e Palindrome: is a string that reads the same forward and
backward, for example, radar, toot, and madam. We would like to
construct an algorithm to input a string of characters and check
whether it is a palindrome.

Add “radar” to the rear

front
add to rear

items

rear front

L) |
r a d a '
f \‘

items remove from front

remove from rear

f r

Remove from front and rear

Figure 3.17: A Deque)

Computer Science, CMU = CS700 33

Problem Solving using Deque

e Palindrome: Implementation

import Deque # As previously defined
def pal_checker(a_string):
char_deque = Deque()

for ch in a_string:
char_deque.add_rear(ch)

still_equal = True

while char_deque.size() > 1 and still_equal:
first = char_deque.remove_front()
last = char_deque.remove_rear()
if first = last:
still_equal = False

return still_equal

print(pal_checker("Isdkjfskf"))
print(pal_checker("radar"))

Computer Science, CMU = CS700 34

	�Problem Solving using �Stack, Queue, and Deque�
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Stack
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Queue
	Problem Solving using Deque
	Problem Solving using Deque

