

Research Methodology in CS

Chapter I

204490 Research Methodology in Computer Science

Engineering vs. Science

Traditional View:

Scientists...

- Create knowledge
- Study the World as it is
- Are trained in scientific method
- · Use explicit knowledge
- Are thinkers

Engineers...

- Apply that knowledge
- Seek to change the World
- Are trained in engineering design
- Use tacit knowledge
- Are doers

More Realistic View

Scientists...

- Create knowledge
- Are problem---driven
- Seek to understand and explain
- Design experiments to test theories
- Prefer abstract knowledge but rely on tacit knowledge

Engineers...

- Create knowledge
- Are problem---driven
- Seek to understand and explain
- Design devices to test theories
- Prefer contingent knowledge but rely on tacit knowledge

Both involve a mixtof design and discovery

Two Types of Research

- Quantitative vs. Qualitative Research
- Quantitative use of statistical, formulaic or numerical analysis to generate results
 - Main approach: analysis; causal determination, prediction, generalization of findings
 - Results: "This solution is N% better"
- Qualitative not quantitative; use of non-numeric techniques
 - Main approach: discovery; illumination, understanding, extrapolation to similar circumstances
 - Results: "This is a new way of solving our problem"

204490 Fundamental Research in CS

Scope of Research

- Varies by level of work
 - Ph.D. students contribution expected at world level; e.g.
 - background investigation on all past work
 - make meaningful addition to world knowledge
 - Undergraduate students contribution can be at local to national to world level; e.g.
 - background investigation at university up to world level
 - make meaningful addition to university up to world level of knowledge

Not CS Research

- Playing with technology
- Book report
- Programming project
- Doing what others have already done
- However, each of these can be done as part of research

204490 Fundamental Research in CS

5

Domain Related CS Research

Research Methods in CS

- Experimental Method
 - Experimental shows the experiments that will occur in order extract results from real world implementations.
 - Experiments can test the veracity of theories.
- Simulation Method: For
 - the systems that is under invention or construction.
 - complex phenomena that cannot be implemented in laboratories evolution of the universe, such as astronomy, physics or economics
- Theoretical Method: the classical methodology since they are related to logic and mathematics. Theory is important to build methodologies
 - To develop logic and semantic models and
 - To reason about the programs in order to prove their correctness
 - To the design and algorithm analysis in order to find solutions or better solutions (performance issues, for example).

204490 Fundamental Research in CS

Research Process (Methodology)

- Initial Idea
- Background Investigation
- Refinement of Idea
- Core Work
 - Investigation and Development
 - Documentation
 - Prototype (if appropriate)
- Evaluation
- Identification of Future Work
- Presentation

Initial Idea

- · Stems from critical thinking
- Be on the lookout for and open to seeing problems
 - Gaps in framework
 - Repetitive behavior that's slightly different (and can be generalized)
 - Manual solutions (that can be automated)
 - Inelegant solutions
- Ask questions
 - "Is something missing here?"
 - "Can this be done in a better way?"
 - "Is there a need for a new approach?"
- Should be an area you're interested in, as:
 - You'll be spending a lot of time with it
 - It won't always be easy/fun to continue...
 204490 Fundamental Research in CS

ental Research in Cs

Background Investigation

- Given an idea, need to determine:
 - Has this work been done previously?
 - What similar work has been done leading up to this point?
 - How is any previous work distinguished from what I'm planning to do?
 - What group of people will be positively impacted by the research?
- Tools
 - Literature Review using library resources (e.g. online databases such as ACM and IEEE, popular magazines)
 - WWW search

Refinement of Idea

- Based on background investigation, need to refine idea
- Issues:
 - Precision focus on precisely identifying:
 - Problem
 - Possible solutions (plural!)
 - Scope need to "build fences"
 - What's an essential part of this work? (fence in)
 - What's tangential, additional, or for any other reason best left for later/someone else? (fence out)

204490 Fundamental Research in CS

11

Core Work-Investigation and Development

- Provide yourself with infrastructure
 - equipment / software
 - additional knowledge ("get up to speed")
- Do the work
 - Experimentation (scientific process)
 - Develop opinions
 - Look for better ways of solving problem
 - Can you generalize?
 - Can you develop a framework?
 - Discuss, brainstorm
 - Reevaluate as you proceed
 - Look for improvements, changes to your original ideas

Core WorkInvestigation and Development (2)

Process

- Work regularly
 - Easier to keep going if have a commitment to a regular work time
 - Helps you keep your past work in mind

Allocate large block of time for research

- Takes time to get going/back to speed
- Make sure can do something significant each work session

204490 Fundamental Research in CS

13

Core Work- Documentation

- Need to document as you go
 - Don't want to lose any information
- 1) Maintain a journal for day-to-day thoughts
 - Can be paper, electronic, ...
 - Keep it with you at all times
 - · Never know when good ideas will hit
- 2) Keep an updated task list
 - Focus on accomplishing something each work session
- 3) Write up your work
 - Periodically, write a few pages on a subset of your work
 - Summarize work, accomplishments, problems
 - At end, write up a summary document
 - · Can be based on steps discussed here

Core Work- Prototype

- Need to demonstrate the merit of your ideas
- If work is non-theoretical, do this through a developed system
 - No need to build the entire system
 - Just need to demonstrate the value of the core ideas

204490 Fundamental Research in CS

15

Evaluation

- Perhaps the most difficult part....
 - Best if can show others are already using your work
- Quantitative
 - Test your prototype
 - What improvements exist over currently available alternative?
 - How much of an improvement do you see?
- Qualitative
 - What can you do now that couldn't be done before?
 - What are the benefits of your solution?

Identification of Future Work

- Helps you organize any future efforts
- Helps others build on your work
- Sources:
 - What you excluded in your idea refinement
 - New problems that have surfaced during your work

204490 Fundamental Research in CS

17

Presentation

- It's not a contribution to the field if no one knows about it or can use it
- Presentation/Dissemination
 - Conferences, Journals, Web
 - e.g. National Undergraduate Research conference
 - Papers, Talks, Poster Sessions
 - e.g. UWEC and UW System Research Days

Researching Skills

In this "Age of information"

How to find the 'right' information
How to evaluate it Reviewing Skills

How to develop/improve it Engineering/Scientific Skills
How to report it clearly and accurately
Writing Skills

How to make money out of it Searching Skills

204490 Fundamental Research in CS

One Fundamental Aspect of Research is "Asking Questions"

- As many as one can...
- Framing Questions
- Identifying Sensible/Meaningful/Useful/ Relevant/ Important Questions
- Investigate those questions
- Report those questions

Asking Sensible Questions

W5H2 Analysis

- (What) to find the information
- (Which) to evaluate it
- (Where) to report it clearly and accurately
- (Why) How to improve it
- (When) How to make money out of it
- (How)...
- (How Much)...

What