CS 204451

Algorithm Design and Analysis

AyrUeAunaw: 204251 was 206281
eou: nau 1 wA. weyasa Jgyeynanu

fBU 2 WA. AT, INIU YIVIRA

unil 5
DANINULUIUNUAZLON YU
(Divide and Conquer algorithms Part2)

CS 204451

mgd Matrix multiplication

Matrix multiplication. Given two n-by-n matrices A and B,
compute C = AB, ¢; = ¥i_q @by

Grade-school. @(n®) arithmetic operations.

CS 204451

1 Matrix multiplication in sub-quadratic time : Brute Force

Matrix multiplication. Given two n-by-n matrices A and B,
compute C = AB, ¢; = YXi—q @iy

Grade-school. @(n?) arithmetic operations.

cll 12 1n 11 all aln bll blZ bln
c‘.’l 022 cZn a:l a22 a2n b’ll b22 : b:n
. - . . x . .
cn 1 cn 2 crm a nl a n2 a nn bnl bn 2 bnn
59 B2 41 70 20 .10 .80 30 .50
31 36 25| = |30 .60 .10 x .10 40 .10
45 31 42 S50 .10 40 10 30 40
Is “grade-school” matrix multiplication algorithm asymptotically
optimal?
CS 204451
@ . T .
% Block matrix multiplication
(.“ /All AIJ /Bll
152 158 164 170 W L 16 17 18 19
504 526 548 570 4 5 6 7 PUNIN 22 23
= X
856 894 932 970 8 9 10 11 24 25 26 27

1208 1262 1316 1370 12 13 14 15 28 29 30 31

N

B,

01 16 17 293 24 25 152 158
C. = A xB, + AnxB,, = x + % =
H 4 5 20 21 6 7 28 29 504 526

CS 204451

CS 204451

unfl
5

Block matrix multiplication

Block matrix multiplication: warmup

8 Matrix multiplication of n/2*n/2 matirces
4 Matrix Addition of n/2*n/2 matirces

T(n)= 8T(n/2) +

recursive calls

Running time = ?

ow*)

add, form submatrices

]_mﬁ
5 Block matrix multiplication: warmup
To multiply two n-by-n matrices A and B:
Divide: partition A and B into ¥2n-by-%2n blocks.
Conquer: multiply 8 pairs of Y2n-by-%2n matrices, recursively.
Combine: add appropriate products using 4 matrix additions.
8 matrix multiplications
n-by-n matrices (of %n-by-%2n matrices)
C=AxB
G, = (AUXBII) it (AIZXBZI)
G G _ Ay A N By B G (41 Byp) + (4, % By)
Gy Cp Ay Ay By By G = Aaix By (o B
\/ G, = (A’_'IXBP) + (Aisz::)
Yn-by-¥n matrices T
4 matrix additions
(of %n-by-%n matrices)
CS 204451
undl .
5 Strassen’s trick

Key idea. Can multiply two 2-by-2 matrices via 7 scalar
multiplications (plus 11 additions and 7 subtractions).

Cn
Cn
Cn

scalars

/\

C'12:| - [All AIZ] * [
CZZ All A22

= Ps+Py— P>+ Ps
= Pi+P>
= Pi+ Py

» = Pi1+Ps—P3;—P7

Bli
BZI

BIZ
BZZ

|

P1< Aux(Bn—B»)
Py < (A1 + A1) xBn
P3 < (Ax1 + An) X Bu
Py < Az % (B —Bn)
Ps <= (A1 + An) x (Bu + Bn)
Ps < (A12— A2) X (B + B)
P71 <= (A1 —An) X (Bu + Bn)

7 scalar multiplications

CS 204451

unfl
5

Strassen’s trick

Key idea. Can multiply two n-by-n matrices via 1/2n-by-1/2n

matrix scalar multiplications (plus 11 additions and 7
subtractions).

Cu
Cn
Cn
Cn

Lo -by-Yon marrices

/\

CIZ] — [All A]l:| =3 [Bll
CZZ AZ] AZZ BZI

Ps+Py—Pr+Ps
Pr&.Pa
Pi+ Py
Pi+Ps—P3—-P

Py < An X (Bi2—Bn)
Py < (An + A1) X Bn
P; < (A1 + An) X B
Py <= Ap X (Bn —Bu)
Ps < (A1 + A») X (Bu + B»)
Ps < (A12 — A») X (B21 + Bn)
P7 < (A1 —-An) x (Bu + B12)

7 matrix multiplications
(of ¥n-by-Yan matrices)

CS 204451 9
undl

5 Strassen’s algorithm

assume 7 is a power of 2

STRASSEN(n, A, B)

IF (n=1) RETURN AXB.
Partition A and B into ¥%n-by-Y¥n blocks.
P < STRASSEN(n / 2, An1, (B12 — B22)).
P3 <= STRASSEN(n / 2, (An + A1), B).
P; <= STRASSEN(n / 2, (A21 + A22), Bn).
Py < STRASSEN(n/ 2, Az, (Ba1—Bn)). «—— TI(n/2)+0Om)
Ps <= STRASSEN(n / 2, (A1 + Az), (Bu + B)).

Ps < STRASSEN(n / 2, (A2 — A»), (Bxn + Bn)).

P7 < STRASSEN(n / 2, (An — A1), (Bu + Bi).

Cn = Ps+Ps—P2+Ps.

CS 204451 o
unfl

5 Analysis of Strassen’s algorithm

2 Theorem. Strassen’s algorithm requires O(n*®") arithmetic
operations to multiply two n-by-n matrices.

Gaussian Elimination is not Optimal
VOLKER STRASSEN*

Received December 12, 1968

1. Below we will give an algorithm which computes the coefficients of the
product of two square matrices 4 and B of order 5 from the coefficients of A
and B with less than 4.7 - #**7 arithmetical operations (all logarithms in this
paper are for base 2, thus log 7 = 2.8; the nsnal method requires approximately
2#* arithmetical operations). The algorithm induces algorithms for inverting a
matrix of order n, solving a system of # linear equations in # unknowns, com-
puting a determinant of order # etc. all requiring less than const #' 7 arithmetical
operations.

Comp science CMU

Cpp = Pi+ P
— Om?)
Cu = P3+Pa.
Cy = Pi+Ps—P;—P;.
Revcas . Pl e il
. tuyannd Unygyran Comp science CMU
CS 204451 1
" . .
g Analysis of Strassen’s algorithm

Theorem. Strassen’s algorithm requires O(n?*#') arithmetic
operations to multiply two n-by-n matrices.

o Pf.
0 When n is a power of 2, apply Case 1 of the master theorem:
I(m=- TT(n/2)+ ©@) = T@m)-0m™=")-0m**")
st
Tecursive calls add, subtact

1 When n is not a power of 2, pad matrices with zeros to be
n’-by-n’,where n < n’ < 2n and n’ is a power of 2.

1230 10 11 12 0 84 90 96 0
4 5 6 0 13 14 15 0| | 201 216 231 O
78 90 16 17 18 0 318 342 366 0
000 0 0 0 0 0 0 0 0 o

WA, @, 37

. weyannd Ugygynan Comp science CMU

CS 204451 -
unfl

5 History

1858 “grade school” on?)
1969 Strassen o(n2sos)
1978 Pan On27%)
1979 Bini om0y
1981 Schénhage o222y
1982 Romani on27)
1982 Coppersmith-Winograd O(n2es)
1986 Strassen O(n2+79)
1989 Coppersmith-Winograd O(n23753)
2010 Strother On23737)
2011 Williams O(n2372873)
2014 Le Gall O(n2372864)

??? o)

1A, tuyannd Ugyaynan Comp science CMU

CS 204451 13
undl

s Quicksort expected running time analysis

The idea of Quicksort
Sorts “in place” (like insertion sort)

Based on the D&C paradigm like merge sort

Divide: Partition the array into 2 subarrays around a pivot x
such that elements in lower subarray < x < elements in
upper subarray.

= W =

Conquer: Recursively sort the 2 subarrays.

Combine: No need

Key:Linear-time partitioning subroutine.

CS 204451 o
unfl
5

Input: An array A and indices p and r
Output: An sorted array A

QuickSort(A, p, 1)

Partition(A, p, q) //Alp. . gl

CS 204451 -
undl
5

"1 o2 -

3 4 5 6 7 8 9
w20 |20] 3 J28]12] 1 [20]11]14]25]A
[]

[20] 3 [28]12] 1 [29]11]14]25]
T

[20] 3]28]12] 1 [29]11]14]25]
T

[20] 3 [28]12] 1 [29]11]14]25]
1 J

[20] 3 J12]28] 1 [29]11]14]25]
T

[20] 3 J12]28] 1 [29]11]14]25]
1

[20] 3 J12] 1 [28]29]11]14]25]
T

[20]3 [12] 1 [28]29]11]14]25]
I]

[20] 3 J12] 1 [28]29]11]14]25]
. T

[20]3 [12] 1 [11]14]28]29]25]
i J

[1a]3 J12]1 |11-28|29|25|

1. x=Alp] //pivot-> Alp]
if p<rthen 2. i=p /* i->splitpoint*/

q = Partition(A,p,r) 3. forj=p+1 to q // j-> unknown

QuickSort(A,p,q-1) 4. if Aljl < x then

QuickSort(A,g+1,) >

ickSort(A,g+1,r
die 4 6. swap(Alil ALD
7. swap(AlplALiD
Initial call:QuickSort(A,1,n) 8. return(i)
CS 204451 P

unfl

5 Quicksort expected running time analysis

Assume all input elements are distinct.

In practice, there are better partitioning algorithms when
duplicate input elements exist.

Best case : Occurs when the subarrays are completely
balanced every time.

Each subarray has < n/2 elements.

Let T(n)=best-case running time on an array of n elements

CS 204451
undl

s Quicksort expected running time analysis

Let T(n) = worst-case running time on an array of n elements
Input sorted or reverse sorted.
Partition around min or max element.

One side of partition always has no elements

CS 204451
unfl

5 Quicksort expected running time analysis

Randomizedquicksort : Randomized Algorithm

Partition around a random element.
Running time is independent of the input order.
T(n)= O(n log n)

The worst case is determined only by the output of a
random-number generator

RandomizedPartition(A, p, r)
i = Random(p,);
swap(A[plAli]);
Partition(A, p, r)

CS 204451
undl

5 Quicksort expected running time analysis

Balanced partitioning

Quick sort ’s average running time is much closer to the best
case than to the worst case.

Imagine that PARTITION always produces a 9-to-1 split.

T(n)<T(9n/10)+T(n/10)+O(n)
=0O(nlogn)

CS 204451 20
unfl
5
/ n \ b cn
% n % N s - cn
logon 1 / 9 9 / \81
100 n 00 n 100 n 100 N] - cn
7=\ /=X 7\
10g10/9 1 e e - 81 / \729
1 T L . h
S Ndn e o
S ey m- < cn
X
T w < cn

O(nlgn)

CS 204451

21

CS 204451

unfl
5

22

Binary search : Time Complexity Analysis

Binary search has the recurrence relation:

T(n)=T(§)+0<1)

Instead of “2” in the recurrence relation we need use “3”.
That indicates that we are dividing the array into 3 sub-arrays
with equal and considering only one of them.

So, the recurrence for the ternary search can be given as

T(n)=T(§)+0<1)

Using Master theorem, we get the complexity as
O(log, n) = O(log n)

undl
5

Consider the modified version of binary search.
Let us assume that the array is divide into 3 equal parts
(ternary search) instead of two equal parts.
Write the recurrence for this ternary search and find its
complexity.

CS 204451 23

undl

5

Binary search : Time Complexity Analysis

For previous problem, what if we divide the array into two
sets of sizes approximately one-third and two-thirds.

We now consider a slightly modified version of ternary search
which only one comparison is made which creates two
partitions, one of roughly n/3 elements and the other of
2n/3.

Here the worst case comes when the recursive call is on the
larger 2n/3 element part. So the recurrence corresponding to
the worst case is

CS 204451

unfl
5

24

Binary search : Time Complexity Analysis

Using master method, we get the complexity as O(log n)

It is interesting to note that we will get the same results for
general k-ary search (as long as k is a fixed constant which
does not depend on n) as n approaches infinity.

