CS 204451

Algorithm Design and Analysis

Fyeduniau: 204251 uag 206281
faou: mou 1 we. lweyand Jeygynanu 381 o9 100

ADU 2 WA A5.9N3U ¥R (38U Fog 209

unil 4
v o @ ¢ = 4 <
ﬂ"l‘il,l,ﬂ{]QJ’VHﬂ’J’]SJﬁ&JW%SLLUUSLﬂE]iL‘JU%
(Solving recurrence relations)
Part |

CS 204451

unit

. Solving recurrence relations

Contents
Recursion Review
Analyzing Recursive algorithm : Time complexity
Recurrence Relation of time complexity
Solving recurrence relations
Iterative substitution method
Recursion-tree Method
The Master Method

CS 204451

unit

. Recursion Review : Why recursion?

Recursion comes directly from Mathematics, where there
are many examples of expressions written in terms of
themselves.
In general,
Recursive code is generally shorter and easier to write
than an iterative code
Loops are also converted into recursive functions
when they are compiled or interpreted
Recursion is most useful for tasks that can be defined in
terms of similar subtasks, for examples, sorting, search
traversal,....

CS 204451

. Recursion Review : Format of a Recursive Function

A recursive function consists of 2 main parts:

Base Case: The base case is where all further calls to the same
function stop, meaning that it does not make any
subsequent recursive calls.

Recursive Case: The recursive case is where the function calls
itself repeatedly until it reaches the base case.

if(test for base case)
return some base case value
else if(test for another base case)
return some other base case value
else //recursive case
return (some work and then recursive call)

CS 204451

unit

‘ Recursion Review : Recursion and memory

The function solves a task by calling itself multiple times
Each time, a copy of the local variables and parameters
for that function, as well as the return address, are
pushed onto the stack memory.

When the function returns, the local variables,
parameters and return addresses are popped from the
stack frame.

It’s important : make sure that every function

call eventually hits the base case in order to avoid
infinite recursion.

5| void main(void){

Func1(0); ’—§

#include<stdio.h>

} x oid Funci(int i)
void Funci(int i)
if(i<3) { 0
Func1(i+1); {
printf(“%d”, i); if(i<3) {
oid Func1(int i) Func1(i+1);
printf(“%d”, i);
if(i<3) {
Funcl(i+1); }
printf(“%d”, i); }
} . . .
void Funcl(int i) void maln(VO|d)
{ {
if(i<3) {
Func1(i+1); Func1(0);
printf(“%d”, i); }
}
! N void Funci(int i)
if(i<3) {
Func1(i+1);
printf(“%d”, i);
Output : 21 0 }}

CS 204451

unit

. Recursion Review : Recursive Algorithm Example

To design the Recursive function

Design recurrence relation for the problem solved

A recurrence is an equation or inequality that describes

a function in terms of its value on smaller inputs.

2) Write Recursive Function for solving the problem by

using the designed Recurrence Relation (1)

CS 204451

unit

. Recursion Review : Recursive Algorithm Example

There are many problems whose solution can be

defined recursively.

Ex. Bl=5*4*3*2*1

4 = 4*3*2*1
31 = 3%*2%1
2 = 2*1

wag 1=1, 0 =1

: n factorial
51 = 5*4
4 = 4*3l
so that 3 - 3xo
> 20 = 2%
M o=1,0 =1

Use this base case as

base case

a condition that stop the recursion

1. Define Recurrence Relation for calculating n factorial (n!) by writing the

FAC(n) function as the following equations

FAC(n) = 1
n * FAC(n-1)

ifn>1

Cs 204451
“UVI“A“
4

Recursion Review : Recursive Algorithm Example

Examples : n factorial (n!)

#include <stdio.h>

long FAC(int n) /
{
if (n <= 1)

return 1; /
else

return n*FAC(n-1);

Example of function
operations

FAC(4)

4 * FAC(3)
4*3*FAC(2)

4 * 3 * 2*FAC(1)

} 4*3*2%]
void main() Example of Output
{ i Enter number (n) : 4
int num; nl=24
printf(“Enter number (n) : ”); scanf(“%d”,&num);
printf(“n! = %ld", FAC(num));
}

CS 204451

unit

. Recursion Review : Recursive Algorithm Example

Examples : Power(x,y) >
Ex. 2%, x =2y =4

2 = 2%2%2%2 28 = 2v2
22 = 2%2°
2?2 = 2%2%2 5 .
92 = 2%2 Sothat 2 = 2*2
- 2t = 2%

21 = 2 >

N
=}
|

; -1 o]

1. Define Recurrence Relation for calculating power(x,y) as following

: =0 [oamame

X * Power(x,y-1) ify>0

20

equations

Power(x,y) =

Where x,y and results of power(x,y) are the integer numbers

CS 204451
4
unit
4

Recursion Review : Recursive Algorithm Example

2. Write Recursive Function

1 ify=0
from Recurrence Power(x,y) 4 Y

. x*Power(x,y-1) ify>0
Relation :

long power(int x, int y) {
if (y == 0) return(1);

/-

else return(x*power(x, y-1)); ~—
}
void main() {
intx, y; Example of function operations
printf("Input x: ");scanf("%d", &x); Input x: 3
printf("Input y: ");scanf("%d", &y); Input y: 4
printf("Output : %ld", power(x, y)); Oz e

CS 204451

unit

. Recursion Review : Recursion vs. Iteration

Recursion Iteration
™ Recursion ends when base case become true ™ Loop ends when control variables
™ Each function call consumes any extra ’s value satisfies the condition
memory space (stack) ™ No extra space In each iteration
™ |nfinite recursion may cause stack overflow ™ infinite loops (repeat forever
error (memory full) without stopping) uses CPU cycles
B Many of the problems can be solved easily (not create extra memory)

using recursion if you think recursively.

int powe| int x, long factorial(int n
Any recursive algorithm can be I lzn‘g pr;(ngl(y =X1¥) t L%)ng fac;: =(I1.)
expressed as an iterative

algorithm, but you may need while (y >=1) {

while (n >= 1) {

powxy *=X; fact *=n;
to keep an explicit stack. -y; —n;
return powxy; return fact;
} }

CS 204451

unit

. Analyzing Recursive Algorithm : Time complexity

= An algorithm contains a recursive call
® T(n), running time to solve problem of size n, is described

by a recurrence

T(n)= { t, Base case
t, + t Other
t, = the running time of the base condition (base case)
t, = the running time of recursive call

t. = the running time of operations that are done after/before
the recursion calls (not t, and t;)

CS 204451

unit

. Analyzing Recursive Algorithm : Time complexity

Examplel: recursive selection sort
Selection_Sort_Recursive(A)

3) Not recursive call:

t.=0(n)
1. if (n <=1) return; o(1)

2. j= FindindexMax(A[1..n]) O(n)

“. 2) Recursive call :

t, =T(n-1
5. swap(An,j); o() g =T(n-1)

4. Selection_Sort_Recursive(A[1..n-1]) g, =T(1)=0(1)

T(n)=tg+ t. = T(n-1)+0(n)
A An algorithm contains a recursive call

Running time : Described by a recurrence.

o) if n =1 Recurrence Relation
TM=1" t(r-1)+0(M) if n>1
Wb

of time complexity

CS 204451

4
unit

‘ Analyzing Recursive Algorithm : Time complexity

U Recurrence Relation of time complexity

0o(1) if n =1
TN=" 4 T(h-1) + O(n) if n>1

c ifn=1
or
T(n)= JLT(n-l) +cn ifn>1
- All in the same

c P meaning
or T(n)= | T(n-1) +n if n>1

1 if n =1
or
T(N)= |T(h-1) + n if n>1

CS 204451

unit

+ Analyzing Recursive Algorithm : Time complexity

Example2: recursive binary search

BinarySearchRecursive(A[left..right])

1.

if (left > right) return(-1)

1) t,= T(1)=0(1)

2. m=(left + right)/2 3) L4 recursive call: t.= O(1)
3. if x == Alm] return m; 2) Recursive call : t,=T(n/2)

4. If x < Alm]

5. return(BinarySearchRecursive (A[left..m-1]))

6. else ST() =ty +t= T(n/2)+0(1)

7. return(BinarySearchRecursive (A[m...right]))

Recurrence Relation of time

complexity ?

o(1) if n=1
T(n)= T(n/2) + O(1) if n>1

Cs 204451
“UVI“A“
4

Analyzing Recursive Algorithm : Practice

Merge_Sort(A,p,r)
1. If p <rthen
2. g= |_ (p+r)/2J
3. Merge_Sort(A,p,q)
4. Merge Sort(A,g+1,r)
5. Merge(Ap,q,r)

Merge(A,p,q,r)
li=p,j=q+1l,n=r-p+1
2.fork=1ton
3. if ((Alil< AGD or (j > 1) and (i=q)
4. BLk] = Alil

i=i+1
else

BIk] = Al[j]
. j=j+1
.fork=0ton-1

5
6
7.
8
9
0. Alp +Kl =BIK]

CS 204451

unit

. Analyzing Recursive Algorithm : Practice

Power Problem -> Power(x,y) =
Directly solving by repetition algorithm

Soloving by recursive algorithm
- Recurrence Relation of the problem

Power(x,y) = |1 ify=0
x*Power(x,y-1) ify >0

long Power(int x,int y){ Recurrence Relation of time

if (y == 0) complexity?
return(1)
else

return(x*power(x,y-1)

CS 204451
4
unit

4

Solving recurrence relations

3 different ways to solve recurrences

[terative substitution method

Iteratively apply the recurrence equation to

itself

and try to discover a pattern

Recursive tree

Master method

204451
CS 20445 20

unit

a Iterative substitution method

Start with the recurrence relation
Repeated substitution until you see a pattern

Example: Merge sort analysis
T(n) =2T(n/2)+cn ket T(n)={ c if n =1

=2[2T(n/4)+cn/2]+cn 2T(n/2)+cn if n>1

=4T(n/4)+cn+cn
=4T(n/4)+2cn k=2, 4=2?
=4[2T(n/8)+cn/4]+2cn

=8T(n/8)+3cn k=3, 8=2°
=2"T(n/2")+ken

set k=log n, so that 2*=n
T(n) = nT(1)+ (log n) (cn)
= cn+c(n log n)= O(n log n) using T(1)=c

CS 204451

unit

3 Iterative substitution method

Example: e ——
Recurrence equation TMN)=2T {\/ﬁ) +1 T2)=0 log NI log 2
- 1/2 Lok _
™ ° 2T(NY9)+1 | 1/2"logN = 1
= 2Q2T(NY%) +1)+1 ' log N = 2*

= 4T(NY) + 2+ 1
=8TINY®+ 4 +2+1

{ log log N = log 2*
iloglogN=klog2

k(172K k-1 2, 51, 50 log log N = k
= 2°T(NY*)+ 2"+ ... +2°+ 2!+ 2 e
o k v &
We NY2" =2 @a3uu k = loglog N
T(N) = 2'98 10N (T(2))4208 o1 4224 21 4 20
n K _‘.n+l =1
= logN-1 (14 T(2)=0 waz EO" =1)

(2'ostosN-1+1 _9)/2.1 = 21 uaz log N = 2¢

€S 204451 22

unit

. Solving recurrence relations : Math Review

Ll Math formulas for solving recurrence relations

n

Arithmetic series > i= mew + 1)

204451
Cs 20ad5 s
“UVI“A‘

B Iterative substitution method : Practice & Solution

1. To Solve Recurrence equation of T(n) for recursive binary

search problem

()= { o(1) if n =1
T(n/2) +0(1) if n>1

2. To solve recurrence equation of T(n) for recursive
selection sort problem

T(n)= { O(l) If n =1
T(n-1) +#0(n) if n>1

i=1 2
n) L I 1
Geometric series Z x! = — for real x > 1
i=0 X —
Inverse harmonic series
o0
2 1
Zx‘z— for]x|<1
=0 1-x
When x = 1/2 the series is
I+12 4718 + =y%= 2
CS 204451 2
o Solving recurrence relations : Practice

To solve each recurrence relation in practice sheet : Assignment#03
by using

1) lterative substitution method OR Recursion-tree Method

2) Master Theorem

