Data Engineering

204426

Feature Extraction

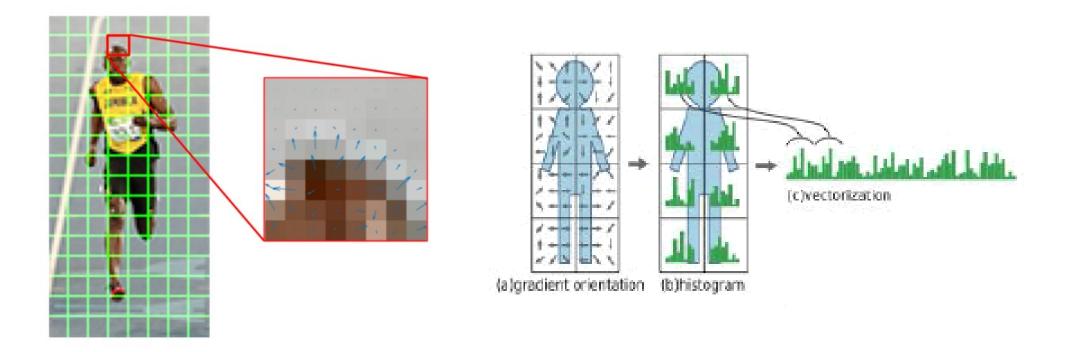
Feature Extraction

- Feature extraction involves reducing the number of resources required to describe a large set of data.
- Feature extraction is a process of dimensionality reduction by which an initial set of raw data is reduced to more manageable groups for processing.
- Feature extraction is the name for methods that select and /or combine variables into features, effectively reducing the amount of data that must be processed, while still accurately and completely describing the original data set.

Feature Extraction



Histogram of Oriented Gradients (HOG)



Source: <u>https://www.learnopencv.com/histogram-of-oriented-gradients/</u> <u>http://www.rroij.com/open-access/pedestrian-detectiona-comparative-studyusing-hog-and-cohog.php?aid=51543</u>

Histogram of Oriented Gradients (HOG)

- 1. Calculate the Gradient Images.
- 2. Calculate Histogram of Gradients
- 3. Block Normalization
- 4. Calculate the HOG feature vector

Histogram of Oriented Gradients (HOG)

1. Calculate the Gradient Images

- Apply a convolution operation to obtain the gradient images: $G_x = I * H_x, \qquad G_v = I * H_v$
- Compute the final gradient magnitude

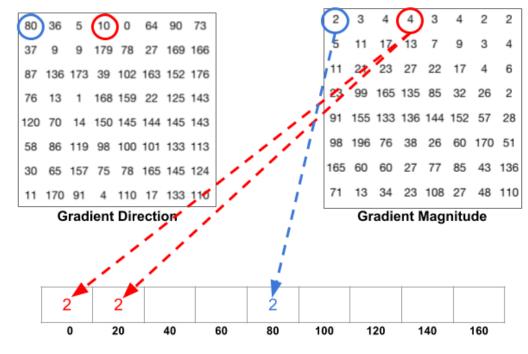
$$|G| = \sqrt{G_x^2 + G_y^2}$$

• Compute the orientation of the gradient

$$\theta = \arctan \frac{G_y}{G_x}$$

Histogram of Oriented Gradients (HOG)

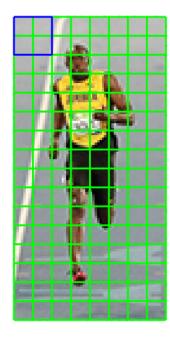
2. Calculate Histogram of Gradients



Histogram of Gradients

Histogram of Oriented Gradients (HOG)

3. Block Normalization



For each of the cells in the current block

- Concatenate their corresponding gradient histograms
- Perform L1 or L2 normalization by dividing each element of the histogram by L1 or L2 norm.

```
L1 Norm: ||x||_1 = \sum_{i=1}^n |x_i|
```

L2 Norm:
$$||x||_1 = \sqrt{\sum_{i=1}^n x_i^2}$$

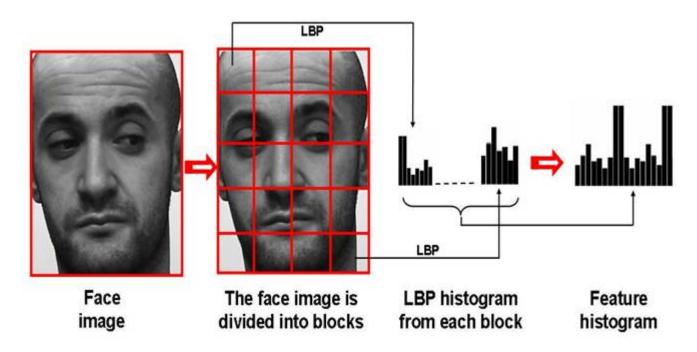
Histogram of Oriented Gradients (HOG)

4. Calculate the HOG feature vector

After all blocks are normalized

- we take the resulting histograms
- concatenate them
- treat them as our final feature vector.

Local Binary Patterns (LBP)



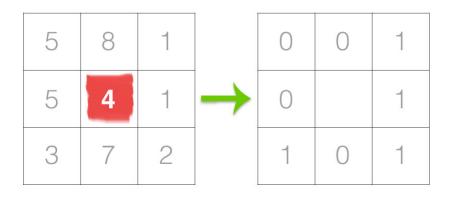
Source: <u>http://www.scholarpedia.org/article/File:LBP-face.jpg</u>

Local Binary Patterns (LBP)

- 1. Convert the image to grayscale
- 2. For each pixel in the grayscale image
 - 1. select a neighborhood of size *r* surrounding the center pixel.
 - 2. calculate LBP value for this center pixel
- 3. Compute a histogram over the output LBP array

Local Binary Patterns (LBP)

Calculating LBP value

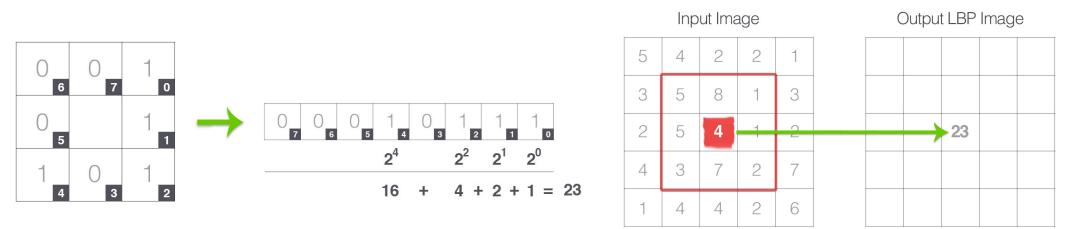


If the intensity of the center pixel is greater than or equal to its neighbor, then we set the value to *1*; otherwise, we set it to *0*.

Threshold the center pixel against its neighbor pixels

Local Binary Patterns (LBP)

Calculating LBP value



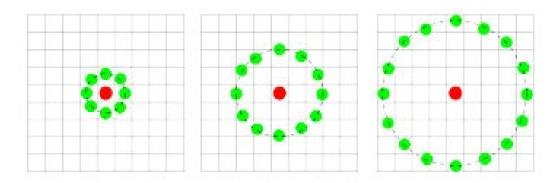
- Start at the top-right point and work our way *clockwise* accumulating the binary string as we go along.
- Convert this binary string to decimal.
- Store in an output array with the same width and height as the original image.

Local Binary Patterns (LBP)

Neighborhood Sizes

To account for variable neighborhood sizes, two parameters were introduced:

- *p*: the number of points in a circularly symmetric neighborhood to consider.
- r: the radius of the circle , which allows us to account for different scales.



Local Binary Patterns (LBP)

Neighborhood Sizes

The Concept of LBP Uniformity

- A LBP is considered to be <u>uniform</u> if it has *at most* two *0-1* or *1-0* transitions.
 - 00001000 : 2 transitions -> uniform pattern
 - 1000000 : 1 transitions -> uniform pattern
 - 01010010 : 6 transitions -> non-uniform pattern
- Uniform LBP patterns add an extra level of *rotation and grayscale invariance*.

One-hot Encoding

- A representation of categorical variables as binary vectors.
- Each word is represented as a binary vector that is:
 - All zero values
 - Except the index of the word, which is marked with a 1.

Rome Paris
Rome =
$$[1, 0, 0, 0, 0, 0, 0, ..., 0]$$

Paris = $[0, 1, 0, 0, 0, 0, ..., 0]$
Italy = $[0, 0, 1, 0, 0, 0, ..., 0]$
France = $[0, 0, 0, 1, 0, 0, ..., 0]$

Source: <u>https://medium.com/@athif.shaffy/one-hot-encoding-of-text-b69124bef0a7</u>

Bag of Words

- What about full texts instead of single words?
- The vector representation of a text is simply the vector sum of all the words it contains: All possible words

. It a cat is
It =
$$[0., 1., 0., 0., 0.]$$
,
is = $[0., 0., 0., 0., 1.]$,
a = $[0., 0., 1., 0., 0.]$,
cat = $[0., 0., 0., 1., 0.]$,
. = $[1., 0., 0., 0., 0.]$
[1., 1., 1., 1.] \checkmark Vector sum of all words
represents the text
"It is a cat."

Bag of Words

They are

- In practice it's much more convenient to use a dictionary instead of an actual vector
- This is known as a bag-of-words, and word order is discarded.

$$cat \quad dog \quad bird \quad panda$$

$$They = [0., \quad 0., \quad 0., \quad 0.],$$

$$are = [0., \quad 0., \quad 0., \quad 0.],$$

$$cat = [1., \quad 0., \quad 0., \quad 0.],$$

$$and = [0., \quad 0., \quad 0., \quad 0.],$$

$$dog = [0., \quad 1., \quad 0., \quad 0.]$$

$$cat and dog = [1., \quad 1., \quad 0., \quad 0.] \longleftarrow \begin{array}{l} Bag \ of \ words \\ represents \ the \ text \\ "They \ are \ cat \ and \ dog" \\ are \ are \ and \ dog" \\ are \ are \ are \ are \ are \ bird \ are \ bird \ bird \ bird \ are \ bird \ bird \ bird \ are \ bird \ bir$$

TF-IDF

Term Frequency (TF)

- The number of times that a word appears in a document is known as the "term frequency" (TF)
- An idea behind TF : "how popular a specific term is within a document"
- Possible definitions of TF:

$$tf(t,d) = \frac{N_{t,d}}{\sum_{t',N_{t',d}}} - \frac{1}{2}$$
 จำนวนคำอื่นที่ไม่ใช่คำ t ทั้งหมดที่ปรากฏในเอกสาร/ข้อความ
เดียวกัน
$$tf(t,d) = \log(1+N_{t,d})$$

TF-IDF

Inverse Document Frequency (IDF)

- How much information the word provides.
- An idea behind IDF : "words that appear in more documents are less meaningful"
- Possible definitions of IDF:

$$\operatorname{idf}(t,D) = \log\left(rac{N}{N_t}
ight)$$
 จำนวน เอกสาร/ข้อความ ทั้งหมดในคลังข้อมูล
จำนวน เอกสาร/ข้อความ ทั้งหมดที่มี คำ t ปรากฏอยู่
ในคลังข้อมูล
 $\operatorname{idf}(t,D) = \log\left(1+rac{N}{N_t}
ight)$

TF-IDF

Inverse Document Frequency (IDF)

 $tfidf(t, d, D) = tf(t, d) \times idf(t, D)$

Document 1: 'All my cat, cat and cat in a row', Document 2: 'When my cat sits down, she looks like a Furby toy! ', Document 3: 'The cat from outer space', Document 4: 'Sunshine loves to sit like this for some reason. ']

 $tf("cat", d_1) = \frac{3}{6}$ $idf("cat", D) = \log\left(\frac{4}{3}\right)$ $tfidf("cat", d_1, D) = \frac{3}{6}\log\left(\frac{4}{3}\right)$