Data Engineering

204426

Data Exploration \& Data Visualization

Distribution Shape

Mean, Median and Mode

	X_{1}	X_{2}	\ldots	X_{10}
\mathbf{x}_{1}				
\ldots				
\mathbf{x}_{n}				

A distribution in statistics is a function that shows:

- the possible values for a variable (x-axis)
- how often they occur (y axis).

Distribution Shape

Mean

- A measure of a central or typical value for a probability distribution.
- The sum of all measurements divided by the number of observations in the data set.

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

Example:

- Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12
- Mean of job performance:

$$
\bar{x}=\frac{7+10+11+15+10+10+12+14+16+12}{10}=\frac{117}{10}=11.7
$$

Distribution Shape

Median

- Reflect the central tendency of the sample in such a way that it is uninfluenced by extreme values or outliners.
- The middle value that separates the higher half from the lower half of the data set.
- To compute the middle value, we need to arrange all the numbers from smallest to greatest.
- Then,

$$
\tilde{x}=\left\{\begin{array}{cl}
x_{\frac{(n+1)}{}}, & \text { if } n \text { is odd } \\
\frac{\left(x_{\left(\frac{n}{2}\right)}^{2}+x_{\left(\frac{n}{2}+1\right)}\right)}{2}, & \text { if } n \text { is even }
\end{array}\right.
$$

Example:

- Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12
- Median of job performance:

$\mathbf{7}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 2}$

Distribution Shape

Mode

- The most frequent value in the data set.

Example:

- Job performance: $7,10,11,15,10,10,12,14,16,12$
- Mode of job performance:

Distribution Shape

Geometric visualization of the mode, median and mean of an arbitrary probability density function

Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa

Distribution Shape

Standard Deviation (SD, s)

- A measure that is used to quantify the amount of variation or dispersion of a set of data values.
- A low standard deviation indicates that the data points tend to be close to the mean.
- A high standard deviation indicates that the data points are spread out over a wider range of values.

Source:
https://en.wikipedia.org/wiki/Standard deviation\#/ media/File:Comparison standard deviations.svg

Distribution Shape

Standard Deviation (SD, s)

The formula for the sample standard deviation is

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

The formula for the population standard deviation is

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Distribution Shape

Standard Deviation (SD, s)

Distribution Shape

Variance

- How far a set of numbers are spread out from their average value.
- It is the square of the standard deviation
- The formula for the sample variance is

$$
s^{2}={\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- The formula for the population variance is

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Distribution Shape

Variance

Source:
https://en.wikipedia.org/wiki/Standard deviation\#/media/ File:Standard deviation diagram.svg

Distribution Shape

Standard Deviation and Variance

Distribution Shape

Skewness

- Skewness is usually described as a measure of a dataset's symmetry - or lack of symmetry.
- The normal distribution has a skewness of 0 .
- The skewness can be calculated by

$$
g_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{\frac{2}{3}}}
$$

Positive
Skew

Symmetrical Distribution

Negative Skew

Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-
388fef94eeaa

Distribution Shape

Kurtosis

- Measures the tail-heaviness of the distribution.
- The excess kurtosis for a standard normal distribution is 0 .
- The excess kurtosis can be calculated by

$$
g_{2}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}}{\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{2}}-3
$$

Distribution Shape

Interquartile Range

- The difference between the first and the third sample quartiles.
- This give the range of middle 50% of the data
- It is found from the following

$$
I Q R=q(0.75)-q(0.25)
$$

- Lower limit: $L L=q(0.25)-1.5 \times I Q R$
- Upper limit: $U L=q(0.75)+1.5 \times I Q R$
- Observations outside these limits are potential outliers.

Distribution Shape

Histogram

- A histogram takes as input a numeric variable only.
- The variable is cut into several bins
- The number of observation per bin is represented by the height of the bar.

Age $\in\{0,75\}$
Data

Bin of Age	Count
$0-5$	36
$6-10$	19
$11-15$	18
\ldots	\ldots
$61-65$	16
$66-70$	3
$71-75$	3

Distribution Shape

Histogram bin widths

- Sturges' rule

$$
k=1+\log _{2} n
$$

- k is the number of bins.
- The bin width h is obtained by taking the range of the sample data and dividing it into the requisite number of bins.
- Normal reference rule

$$
h \approx 3.5 \times \sigma \times n^{-\frac{1}{3}}
$$

- Scott's rule

$$
h=3.5 \times s \times n^{-\frac{1}{3}}
$$

- Freedman-Diaconis rule

$$
h=2 \times I Q R \times n^{-\frac{1}{3}}
$$

Distribution Shape

Density

- Visualize the underlying probability distribution of the data by drawing an appropriate continuous curve.
- This curve needs to be estimated from the data using kernel density estimation.

Distribution Shape

Kernel density estimation

- The univariate kernel estimator is given by

$$
f(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)
$$

- $K(t)$ is a kernel
- $h>0$ is a smoothing parameter called the bandwidth, and can be estimated by

$$
h=0.786 \times I Q R \times n^{-\frac{1}{5}}
$$

Distribution Shape

Boxplot

Boxplot gives a nice summary of one or several distributions.

Distribution Shape

Boxplot

Mean daily temperatures in Lincoln, $N E$, visualized as boxplots.
Source: Claus O. Wilke (2019), Fundamentals of Data Visualization. USA: O'Reilly Media, Inc.

Distribution Shape

Violin Plot

- Visualize the distribution of a numeric variable for one or several groups.
- It is really close from a boxplot but allows a deeper understanding of the distribution.
- Violins are particularly adapted when
- the amount of data is huge
- showing individual observations gets impossible.

Anatomy of a violin plot

Distribution Shape

Violin Plot

Mean daily temperatures in Lincoln, NE, visualized as violin plot.
Source: Claus O. Wilke (2019), Fundamentals of Data Visualization. USA: O’Reilly Media, Inc.

References

- Joanes, D. N. and C. A. Gill (1998). "Comparing measures of sample skewness and kurtosis." In: Journal of the Royal Statistical Society: Series D (The Statistician) 47.1, pp. 183-189.
- Raymond H. Meyers, Ronald E. Walpole and, Sharon L. Meyers, and Keying E. Ye (2012). Probability \& Statistics for Engineers \& Scientists. 9th. USA: Prentice Hall.
- Westfall, Peter H. (2014). "Kurtosis as Peakedness" In: The American Statistician 68.3, pp. 191-195.
- Claus O. Wilke (2019), Fundamentals of Data Visualization. USA: O’Reilly Media, Inc.
- Martinez, Mendy L., Martinez, Angel R. and Solka, Jeffrey L. (2017). Exploratory Data Analysis with MATLAB. USA: CRC Press.

