# Data Engineering

204426

# Data Quality and Data Auditing

### Outline

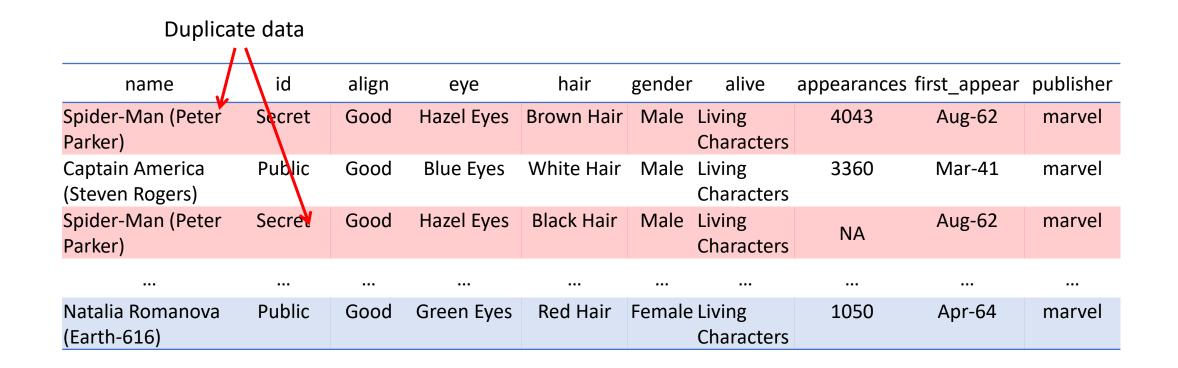
- Data Quality
  - Completeness
  - Uniqueness
  - Consistency
  - Validity
  - Accuracy
  - Timeliness
- Quality Assessment Process
- Data Auditing



#### The challenges of data quality

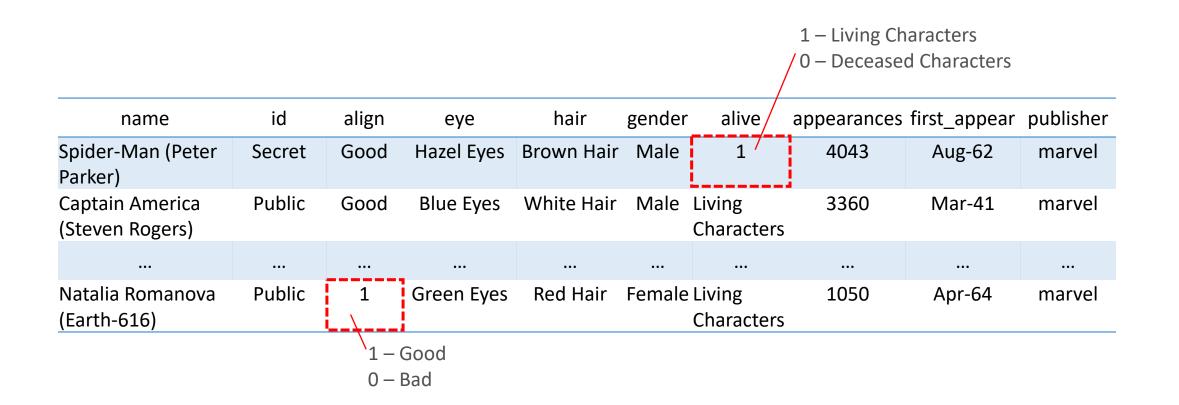
- <u>The diversity of data sources</u> brings abundant data types and complex data structures and increases the difficulty of data integration.
- <u>Data volume is tremendous</u>, and it is difficult to judge data quality within a reasonable amount of time.
- <u>Data change very fast</u> and the "timeliness" of data is very short, which necessitates higher requirements for processing technology.
- No unified and approved data quality standards.
  - ISO 8000 data quality standards

#### Completeness


- The values of all components of a single datum are valid.
- For example, for image color, RGB can be used to describe red, green, and blue, and RGB represents all parts of the color data. If the color value of a certain component is missing, the image cannot show the real color and its completeness is destroyed
- The customer address includes an *optional* landmark attribute, data can be considered complete even when the landmark information is missing.

| name                               | id     | align | eye        | hair       | gender | alive                | appearances | first_appear | publisher |
|------------------------------------|--------|-------|------------|------------|--------|----------------------|-------------|--------------|-----------|
| Spider-Man (Peter                  | Secret | Good  | Hazel Eyes | Brown Hair | Male   | Living               | 4043        | Aug-62       | marvel    |
| Parker)                            |        |       |            |            |        | Characters           |             |              |           |
| Captain America<br>(Steven Rogers) | Public | Good  | Blue Eyes  | White Hair | Male   | Living<br>Characters | 3360        | Mar-41       | marvel    |
| Spider-Man (Peter<br>Parker)       | Secret | Good  | Hazel Eyes | Black Hair | Male   | Living<br>Characters | NA          | Aug-62       | marvel    |
|                                    |        |       |            |            |        |                      |             |              |           |
| Natalia Romanova<br>(Earth-616)    | Public | Good  | Green Eyes | Red Hair   | Female | Living<br>Characters | 1050        | Apr-64       | marvel    |
|                                    |        |       |            |            |        |                      |             |              |           |

Missing data


#### Uniqueness

- No duplication or overlaps.
- Data uniqueness also improves data governance and speeds up compliance.



#### Consistency

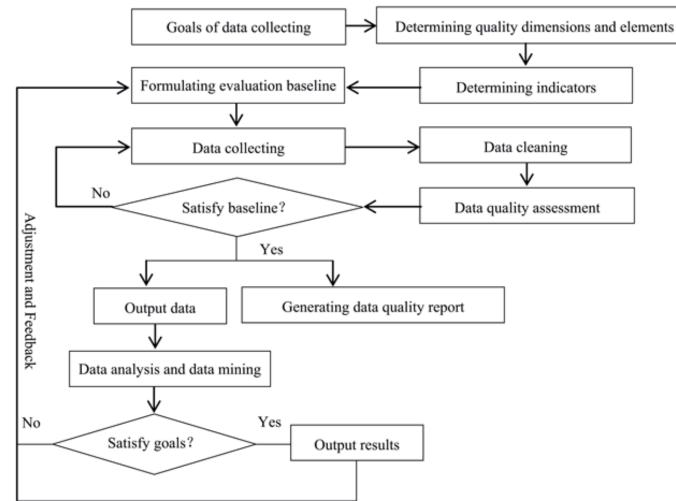
- Refers to whether the *logical relationship* between correlated data is correct and complete.
- The same data that are located in different storage areas should be considered to be equivalent.
- Equivalency means that the data have equal value and the same meaning or are essentially the same.



#### Validity

- The value attributes are available for aligning with the specific domain or requirement.
- For example, ZIP codes are valid if they contain the correct characters for the region.
- In a calendar, months are valid if they match the standard global names.
- Using business rules is a systematic approach to assess the validity of data.

| month | started_at         | ended_at           | DURATION | start_location_name                                                       | end_location_name                                                      |
|-------|--------------------|--------------------|----------|---------------------------------------------------------------------------|------------------------------------------------------------------------|
| May   | 5/21/2019<br>18:33 | 5/21/2019<br>18:40 | 0:17:03  | 1901 Roma Ave NE,<br>Albuquerque, NM 87106,<br>USA                        | 1899 Roma Ave NE,<br>Albuquerque, NM 87106, USA                        |
| May   | 5/21/2019<br>19:07 | 5/21/2019<br>19:12 | 0:04:57  | 1 Domenici Center en<br>Domenici Center,<br>Albuquerque, NM 87106,<br>USA | 1111 Stanford Dr NE,<br>Albuquerque, NM 87106, USA                     |
| May   | 5/21/2019<br>19:13 | 5/21/2019<br>19:15 | 0:01:14  | 1 Domenici Center en<br>Domenici Center,<br>Albuquerque, NM 87106,<br>USA | 1 Domenici Center en<br>Domenici Center,<br>Albuquerque, NM 87106, USA |
|       |                    |                    |          |                                                                           |                                                                        |
| July  | 7/21/2019<br>23:55 | 7/22/2019<br>1:46  | 1:51:00  | 105 Stanford Dr SE,<br>Albuquerque, NM 87106,<br>USA                      | 3339 Central Ave NE,<br>Albuquerque, NM 87106, USA                     |


#### Accuracy

- Accuracy can be easily measured, such as gender, which has only two definite values: male and female.
- But in other cases, there is no known reference value, making it difficult to measure accuracy.
- Because accuracy is correlated with context to some extent, data accuracy should be decided by the application situation.

#### Timeliness

- The time delay from data generation and acquisition to utilization.
- Data should be available within this delay to allow for meaningful analysis. In the age of big data, data content changes quickly so timeliness is very important.

### **Quality Assessment Process for Big Data**



In different business environments, the selection of data quality elements will differ.

The formulation of assessment indicators also depends on the actual business environment.

Cai, L. and Zhu, Y., 2015. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. *Data Science Journal*, 14, p.2. DOI: <u>http://doi.org/10.5334/dsj-2015-002</u>

### References

- Wang, R., & Storey, V. (1995) Framework for Analysis of Quality Research. IEEE Transactions on Knowledge and Data Engineering 1(4), pp 623–637.
- McGilvray, D. (2010) Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information, Beijing: Publishing House of Electronics Industry.
- Silberschatz, A., Korth, H., & Sudarshan, S. (2006) Database System Concepts, Beijing: Higher Education Press.
- Cai, L. and Zhu, Y., 2015. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14, p.2. DOI: <u>http://doi.org/10.5334/dsj-2015-002</u>
- https://www.collibra.com/blog/the-6-dimensions-of-data-quality