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Mel Frequency Cepstral Coefficient

Step 1: Pre-Emphasis
« Amplify the high frequencies for

» Balance the frequency spectrum since high frequencies usually have smaller magnitudes
compared to lower frequencies

» Avoid numerical problems during the Fourier transform operation
* Improve the Signal-to-Noise Ratio (SNR)

» Applied to a signal x using the first-order filter:
y(t) =x(t) —ax(t—1)

« The filter coefficient « may be 0.95 or 0.97
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Step 2: Framming

* Frequencies in a signal change over time
» Apply Fourier transform across the entire signal - lose the frequency contours

* Frequencies in a signal are stationary over a very short period of time

» Apply Fourier transform over this short-time frame - good approximation of the frequency
contours

« Split the signal into short-time frames
» Frame sizes in speech processing range from 20 ms to 40 ms
* 50% (+/-10%) overlap between consecutive frames.
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Step 3: Windowing

« Apply a window function such as the Hamming window to each frame.

* In order to counteract the assumption made by the FFT that the data is infinite and to reduce
spectral leakage.

« A Hamming window has the following form:

(n) = 0.54 — 0.46 (Zm)
w(n) = 0. A6 cos | m— o ‘ S
where 0 <n < N — 1, N is the window length. osl ook _____________________ S |
20,4 ..................................................................................

Hamming Window ..} .. /... S ..................... ................... ]

Source: https://haythamfayek.com/2016/04/21/speech-processing-
for-machine-learning.html (accessed on Sep 12, 2023)
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Step 4: Fourier-Transform and Power Spectrum

« Perform an N-point FFT on each frame
» Typically, N is 256 or 512 (power of 2)

 Calculate the power spectrum by

o _ JFFT(x)P?
N
where x; is the 1-th frame of signal x
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Step 5: Mel Filter Banks

 To extract frequency bands, Apply triangular filters (typically 40 filters) on Mel-scale to the
power spectrum.

» Mel-scale mimics non-linear human ear perception of sound
» More discriminate lower frequency
» Less discriminate higher frequency

« We can convert between Hertz (f) and Mel (m) by

_ / )
m = 2595 loglorgl + 200

f = 700(1075% — 1)

204371- Feature Engineering



Mel Frequency Cepstral Coefficient

Step 5: Mel Filter Banks
« Model filter banks on Mel-scale by

( 0 k<f(m-—1)
k—f(m—1)
m—1)<k<f(m
_Jfm—fm-p ST D=kssm)
Hy, (k) = < Fm+1)—k o << Fomt T
m) = S m
fm+1) - f(m)
\ 0 k>f(m+1)
where f(m) is the center frequency of the triangular filter.
g A AR AR AR
) Frequency 2500 3000 3500 4000
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Step 5: Mel Filter Banks

(a) The full filterbank (h) Example power spectrum of an audio frame
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(c) filter @ from filterbank {d) windowed power spectrum using filter &
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(e) filter 20 from filterbank () windowed power spectrum using filter 20 Plot of Mel Filter bank and windowed

o | L, 05 power spectrum
B 2 Source:
E_ = EL http://practicalcryptography.com/miscellaneous/
S g . . . . Jd & . M . . machine-learning/guide-mel-frequency-cepstral-

50 100 150 200 250 50 100 150 200 250 coefficients-mfccs/ (accessed on Sep 12, 2023)
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Step 6: Log-energy
* The log-energy of each filter is calculated by

N-1
S(m) =1n P(k)H,, (k)

where 0 < m < M and M is the number of filters.
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Step 6: Log-energy
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Spectrogram of the Signal
Source: https://haythamfayek.com/2016/04/21/speech-processing-for-machine-
learning.html (accessed on Sep 12, 2023)
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Step 7: Discrete Cosine Transform (DCT)

« The filter bank coefficients are highly correlated, which could be problematic in some
machine learning algorithms.

« Apply Discrete Cosine Transform (DCT) to decorrelate the filter bank coefficients and yield a
compressed representation of the filter banks.

« The DCT of ‘M’ filter outputs as Mel-frequency cepstrum coefficients is given as

Qo ()
c(q) = 25(m)cos< T, 2 >
m=0

 Typically, the resulting cepstral coefficients (q) 2-13 are retained and the rest are discarded.
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Step 7: Discrete Cosine Transform (DCT)
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Source: https://haythamfayek.com/2016/04/21/speech-processing-for-machine-
learning.html (accessed on Sep 12, 2023)
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