Feature Engineering

Papangkorn Inkeaw, Ph.D.

Feature Improvement

Chapter 3 (Part II)

Reducing the number of possible values a feature can take

- Continuous feature \rightarrow a discrete feature (integer).
- Continuous feature \rightarrow an (ordered) categorical feature.

Effects of discretization

- Discretization error
- Result in fewer parameters for ML models that can take categorical feature as input.
- Increase the number of parameters for ML models that cannot accommodate categorical features directly.

Usefulness

- Improve generalization
- Error analysis and understanding the behavior of the system

Feature discretization methods:

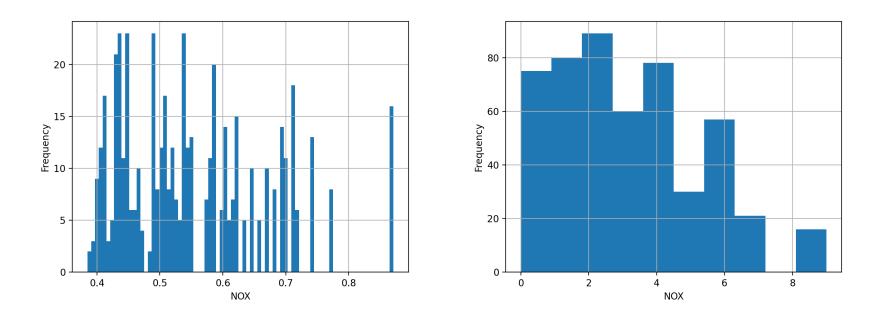
- **Unsupervised discretization**: perform on over the feature values alone, in isolation from the target class values.
 - Equal interval width discretization
 - Equal frequency Interval discretization
 - K-mean Clustering
- Supervised discretization: done relative to the target class.
 - ChiMerge discretization
 - Decision trees

Equal interval width discretization

- Get the range of variable: $l = \max(X) \min(X)$
- Divide the range *l* into *k* equal region: w = L/k
- Obtain the boundaries of each bin

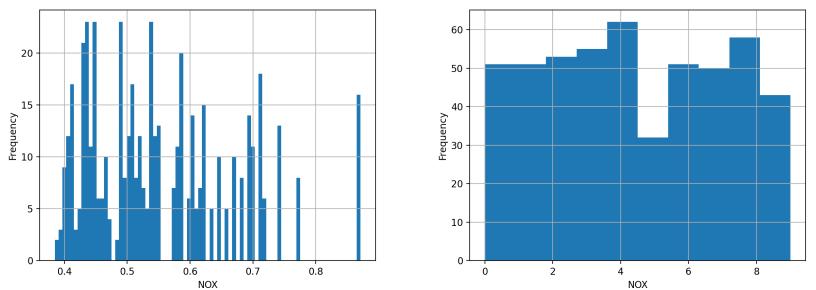
Note that this method is very sensitive to outliers, so either remove them first or do not use them if you have many outliers.

 $([\min(X), \min(X) + w), [\min(X) + w, \min(X) + 2w), [\min(X) + 2w, \min(X) + 3w), \dots, [\min(X) + (k - 1)w, \max(X)])$



Equal frequency Interval discretization

- Get the number of instances m
- Divide *m* instances into *k* groups: f = m/k (all groug contain the same number of numerical values.)
- Sort instances by their values and pick the boundary items
- This methos helps when you have different levels of data density in different regions of the possible values.



K-mean Clustering

- Perform k-mean clustering on the feature
- Use the number of the cluster as the feature category

ChiMerge discretization

- Applies the Chi Square method to determine the probability of similarity of data between two intervals.
- Procedure:
 - 1. Sort the feature values
 - 2. Consider each feature value as a separate internal. The boundary between two intervals is $\frac{x_i + x_{i+2}}{2}$
 - 3. Replete until there are no interval can be merged:
 - 1. For each interval and its neighbors, calculate chi-square test over the values of the target class.
 - 2. Merge an interval with its neighbors if the chi-square test cannot reject the null hypothesis.

Decision trees

- Use a decision tree to identify the optimal splitting points that determine the bins or contiguous intervals.
- Procedure:
 - 1. Train a decision tree of limited depth (e.g., 2, 3 or 4) using the variable we want to discretize to predict the target.
 - 2. Replace the original value by the prediction returned by the tree.

Note that this method may cause over-fitting.

Turn the nonnumeric categories into numbers.

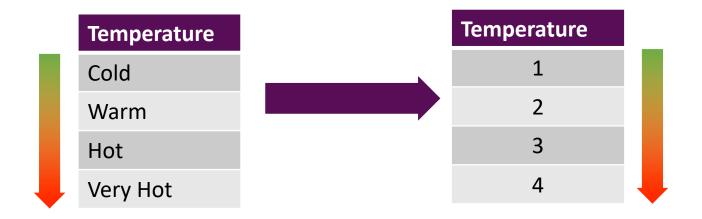
• Some ML models work with numeric data only.

Categorical feature encoding methods:

- Ordinal Encoding
- One-hot Encoding
- Dummy Coding
- Effect Coding
- Feature hashing

Ordinal Encoding (Label Encoding)

- The encoding of variables retains the ordinal nature of the variable
- Each category is assigned a value from 1 through the number of possible values by considering the order of values.



One-hot Encoding

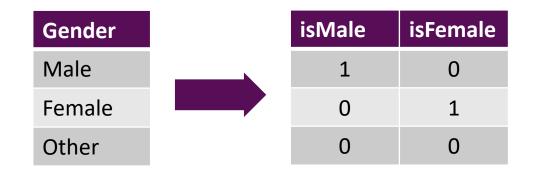
- Use *k* bite to represent *k* possible categories.
- Map each category to a vector that contains 1 and 0
 - 1 presence of the feature
 - o absence of the feature

Gender	isMale	isFemale	isOther	
Male	1	0	0	
Female	0	1	0	
Other	0	0	1	

Note that this method it uses one more bit than is strictly necessary.

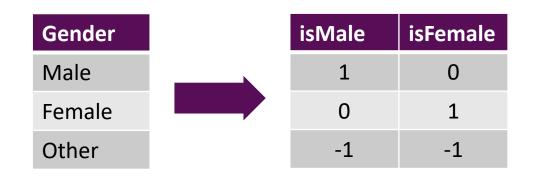
Dummy Coding

- Dummy coding removes the extra degree of freedom by using only k-1 features in the representation.
- A category, called referent category, is represented as a vector of all zero.



Effect Coding

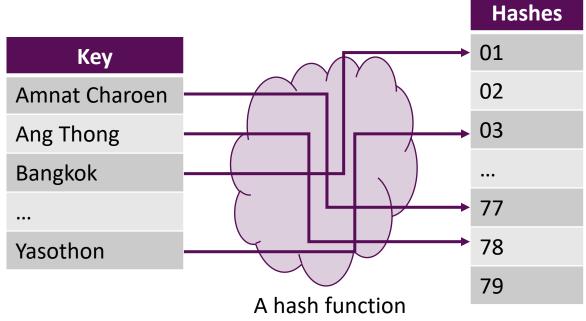
- Similar to dummy coding
- But the reference category is now represented by the vector of all –1's.



Note that one-hot encoding, dummy coding and effect coding break down when the number of categories becomes very large.

Feature Hashing

• Hash function is a deterministic function that maps a potentially unbounded integer to a finite integer range.



Feature Hashing (Cont.)

- Hash encoding represents the categorical data into numerical value by the hashing function.
- Hashing schemes work on strings, numbers and other structures like vectors.
- Hashed outputs as a finite set of **b** bins
 - The same categories are assigned to the same bin (or subset of bins) out of the **b** bins based on the hash value.
 - The number of bins **b** can be pre-defined.

Note that a high number of categorical values are represented into a smaller number of features, different categorical values could be represented by the same Hash values — this is called a collision.

	Name	Genre	0	1	2	3	4	5
1	Super Mario Bros.	Platform	0.0	2.0	2.0	-1.0	1.0	0.0
2	Mario Kart Wii	Racing	-1.0	0.0	0.0	0.0	0.0	-1.0
3	Wii Sports Resort	Sports	-2.0	2.0	0.0	-2.0	0.0	0.0
4	Pokemon Red/Pokemon Blue	Role-Playing	-1.0	1.0	2.0	0.0	1.0	-1.0
5	Tetris	Puzzle	0.0	1.0	1.0	-2.0	1.0	-1.0
6	New Super Mario Bros.	Platform	0.0	2.0	2.0	-1.0	1.0	0.0

Feature Hashing on the Genre attribute. A signed 32-bit version of the *Murmurhash3* hash function was used.

Source: <u>https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63</u>

References & Study Resources

- Pablo Duboue. (2020). The Art of Feature Engineering: Essentials for Machine Learning. Cambridge University Press.
- Alice Zheng and Amanda Casari. (2018). Feature Engineering for Machine Learning. O'Reilly Media, Inc.
- Niculescu-Mizil, et al. (2009). Winning the KDD Cup Orange Challenge with Ensemble Selection. JMLR: Workshop and Conference Proceedings 7: 23-34. KDD 2009.
- <u>https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63</u>