Feature Engineering

Papangkorn Inkeaw, Ph.D.

Feature Understanding

Chapter 2

Structure and Unstracture Data

Structured (organized) Data

- Can be broken down into obevations and characteristics
- Organized using a tabular method → Data tabel
- Such as:
 - Meteorological data
 - Address information
 - Billing information

	Name	Age	Gender	Address	Zip Code				
ations	Suwit	32	Μ	32/1	50200				
	Sitta	45	Μ	301 M.1	55000				
bev									
٥L	Marisa	28	F		10500				

Characteristics

Structure and Unstracture Data

Unstructured (unorganized) Data

- Free-flowing entity
- Does not follow standard organizational hierarchy
- A single characteristic (column)
- Examples:
 - Free-text comments
 - Images
 - Sounds
 - Server log

Review	Sentiment
One of the other reviewers has mentioned that after watching just 1 Oz episode you'll be hooked. The	Positive
Basically there's a family where a little boy (Jake) thinks there's a zombie in his closet & his par	Negative

Quantitative and Qualitative Data

Quantitative Data

- Numerical in nature
- Basic mathematical procedures are possible on the set.
- Examples:
 - Temperature in Fahrenheit or Celsius
 - The amount of blood you donate
 - Weight and height

Discrete

- Take on a finite or countably infinite set
- Such as integer, grade and number of object

Continuous

- Take on any real value
- Such as height, weight and size

Quantitative and Qualitative Data

Qualitative Data

- Categorical and language in nature
- Cannot be described using numbers and basic mathematics.
- Examples:
 - Weather measured as cloudy or sunny
 - The name of a person
 - Reviews in social medias

•	
•	
•	
•	

The four levels of data:

- 1. Nominal level
- 2. Ordinal level
- 3. Interval level
- 4. Ratio level

Each level comes with a varying level of control and mathematical possibilities.

Categorical Data

Nominal Level

- Attribute values in the domain are unordered.
- Can only equality (=) compare.
- Such as gender, type of hair, etc.

Ordinal Level

- Attribute values are ordered.
- Can both equality (=) and inequality (<, >) compare.
- Such as education, feel (unhappy, OK, happy), etc.

Interval Level

- Can compute only differences (addition or subtraction)
- For example, temperature measured in °C or °F.
 - If it is 20 °C on one day and 10 °C on previous day
 - We **can** talk about a temperature drop of 10°C.
 - We **cannot** say that it is twice as cold as the previous day.

Ratio Level

- Can compute both differences and ratio between values,
- For example age.
 - If Jone is 20 years old and Jim is 10 years old.
 - We **can** say that Jone older than Jim with 10 years.
 - We **can** say that Jone is twice as old as Jim.

Summary of data types and scale measures

Provides	Nominal	Ordinal	Interval-scaled	Ratio-scaled
The order of values is known		•	•	•
"Count," aka "Frequency of Distribution"	•	•	•	•
Mode	•	•	•	•
Median		•	•	•
Mean			•	•
Can quantify the difference between each values			•	•
Can add or subtract values			•	•
Can multiple and divide values				•
Has "true zero"				•

Source: https://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/

Descriptive Statistics

Mean

- A measure of a central or typical value for a probability distribution.
- The sum of all measurements divided by the number of observations in the data set.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Descriptive Statistics

Median

- Reflect the central tendency of the sample in such a way that it is uninfluenced by extreme values or outliners.
- The middle value that separates the higher half from the lower half of the data set.
- To compute the middle value, we need to arrange all the numbers from smallest to greatest.
- Then

$$\tilde{x} = \begin{cases} x_{\underline{(n+1)}}, & \text{if n is odd,} \\ \frac{\left(x_{\underline{(n)}} + x_{\underline{(n+1)}}\right)}{2}, & \text{if n is even,} \end{cases}$$

Descriptive Statistics

Mode

• The most frequent value in the data set.

Example

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12

Mean:

$$\bar{x} = \frac{7+10+11+15+10+10+12+14+16+12}{10} = \frac{117}{10} = 11.7$$

Median:

First, sort the job performance. As the number of job performance data (n = 10) is even, the median of job performance is

Example

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12

Mode:

Descriptive Statistics

Standard Deviation

- A measure that is used to quantify the amount of variation or dispersion of a set of data values.
- A low standard deviation indicates that the data points tend to be close to the mean.
- A high standard deviation indicates that the data points are spread out over a wider range of values.
- The formula for the sample standard deviation is

Descriptive Statistics

Variance

- How far a set of numbers are spread out from their average value.
- It is the square of the standard deviation

Example

- Job performance; X={7, 10, 11, 15, 10, 10, 12, 14, 16, 12}
- Mean of job performance \bar{x} : 11.7
- Standard Deviation; $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i \bar{x})^2} = 2.71$

• Variance;
$$var(X) = SD^2 = 2.71^2 = 7.34$$

Job performance x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	
7	-4.7	22.09	
10	-1.7	2.89	
11	-0.7	0.49	
15	3.3	10.89	
10	-1.7	2.89	
10	-1.7	2.89	
12	0.3	0.09	
14	2.3	5.29	
16	4.3	18.49	
12	0.3	0.09	
$\sum_{i=1}^{n} (x_i - \bar{x})^2$	66.1		
$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-$	2.71		

Graphical Method

Bar Plot

- Each entity of the categoric variable is represented as a bar.
- The size of the bar represents its numeric value.

Graphical Method

Pie

- A circle divided into sectors that each represent a proportion of the whole.
- It is often used to show proportion, where the sum of the sectors equal 100%.

Party composition of the eighth German Bundestag, 1976–1980, visualized as a pie chart. This visualization highlights that the ruling coalition of SPD and FDP had a small majority over the opposition CDU/CSU.

Source: Claus O. Wilke (2019), Fundamentals of Data Visualization. USA: O'Reilly Media, Inc.

Graphical Method

Histogram

- A histogram takes as input a numeric variable only.
- The variable is cut into several bins
- The number of observation per bin is represented by the height of the bar.

Graphical Method

Boxplot

• Boxplot gives a nice summary of one or several distributions.

References & Study Resources

- Sinan Ozdemir and Divya Susarla. (2018). Feature Engineering Made Easy. Packt Publishing.
- Claus O. Wilke (2019), Fundamentals of Data Visualization. USA: O'Reilly Media, Inc.
- <u>https://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/</u>
- <u>https://en.wikipedia.org/wiki/Standard_deviation#/media/File:Standard_deviation_diagram.svg</u>