
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 1

Defect testing

� Testing programs to establish

the presence of system defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 2

Objectives

� To understand testing techniques that are geared

to discover program faults

� To introduce guidelines for interface testing

� To understand specific approaches to object-

oriented testing

� To understand the principles of CASE tool

support for testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 3

Topics covered

� Defect testing

� Integration testing

� Object-oriented testing

� Testing workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 4

The testing process

� Component testing

• Testing of individual program components

• Usually the responsibility of the component

developer (except sometimes for critical systems)

• Tests are derived from the developer’s experience

� Integration testing

• Testing of groups of components integrated to create

a system or sub-system

• The responsibility of an independent testing team

• Tests are based on a system specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 5

Testing phases

Component
testing

Integration
testing

Software developer Independent testing team

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 6

Defect testing

� The goal of defect testing is to discover defects in

programs

� A successful defect test is a test which causes a

program to behave in an anomalous way

� Tests show the presence not the absence of

defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 7

� Only exhaustive testing can show a program is

free from defects. However, exhaustive testing

is impossible

� Tests should exercise a system's capabilities

rather than its components

� Testing old capabilities is more important than

testing new capabilities

� Testing typical situations is more important than

boundary value cases

Testing priorities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 8

� Test data Inputs which have been devised to

test the system

� Test cases Inputs to test the system and the

predicted outputs from these inputs if the

system operates according to its specification

Test data and test cases

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 9

The defect testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 10

Black-box testing

� An approach to testing where the program is

considered as a ‘black-box’

� The program test cases are based on the system

specification

� Test planning can begin early in the software

process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 11

Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 12

Equivalence partitioning

� Input data and output results often fall into

different classes where all members of a class are

related

� Each of these classes is an equivalence partition

where the program behaves in an equivalent way

for each class member

� Test cases should be chosen from each partition

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 13

Equivalence partitioning

System

Outputs

Invalid inputs Valid inputs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 14

� Partition system inputs and outputs into

‘equivalence sets’
• If input is a 5-digit integer between 10,000 and 99,999,

equivalence partitions are <10,000, 10,000-99, 999 and >

10, 000

� Choose test cases at the boundary of these

sets
• 00000, 09999, 10000, 99999, 10001

Equivalence partitioning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 15

Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 16

Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;

Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition

-- the array has at least one element

T’FIRST <= T’LAST

Post-condition

-- the element is found and is referenced by L

(Found and T (L) = Key)

or

-- the element is not in the array

(not Found and

not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 17

� Inputs which conform to the pre-conditions

� Inputs where a pre-condition does not hold

� Inputs where the key element is a member of

the array

� Inputs where the key element is not a member

of the array

Search routine - input partitions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 18

Testing guidelines (sequences)

� Test software with sequences which have only a

single value

� Use sequences of different sizes in different tests

� Derive tests so that the first, middle and last

elements of the sequence are accessed

� Test with sequences of zero length

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 19

Search routine - input partitions
Array Element

Single value In sequence

Single value Not in sequence

More than 1 value First element in sequence

More than 1 value Last element in sequence

More than 1 value Middle element in sequence

More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)

17 17 true, 1

17 0 false, ??

17, 29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 7

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 20

� Sometime called white-box testing

� Derivation of test cases according to program

structure. Knowledge of the program is used to

identify additional test cases

� Objective is to exercise all program statements

(not all path combinations)

Structural testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 21

White-box testing

Component
code

Test
outputs

Test data

DerivesTests

Binary search (Java)

class BinSearch {

// This is an encapsulation of a binary search function that takes an array of

// ordered objects and a key and returns an object with 2 attributes namely

// index - the value of the array index

// found - a boolean indicating whether or not the key is in the array

// An object is returned because it is not possible in J ava to pass basic types by

// reference to a function and so return two values

// the key is -1 if the element is not found

public static void search (int key, int [] elemArray, Result r)

{

int bottom = 0 ;

int top = e lemArray.length - 1 ;

int mid ;

r.found = false ; r.index = -1 ;

while (bottom <= top)

{

mid = (top + bottom) / 2 ;

if (elemArray [mid] == key)

{

r.index = mid ;

r.found = true ;

return ;

} // if part

else

{

if (elemArray [mid] < key)

bottom = mid + 1 ;

else

top = mid - 1 ;

}

} //while loop

} // search

} //BinSearch

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 23

� Pre-conditions satisfied, key element in array

� Pre-conditions satisfied, key element not in

array

� Pre-conditions unsatisfied, key element in array

� Pre-conditions unsatisfied, key element not in

array

� Input array has a single value

� Input array has an even number of values

� Input array has an odd number of values

Binary search - equiv. partitions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 24

Binary search equiv. partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 25

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)

17 17 true, 1

17 0 false, ??

17, 21, 23, 29 17 true, 1

9, 16, 18, 30, 31, 41, 45 45 true, 7

17, 18, 21, 23, 29, 38, 41 23 true, 4

17, 18, 21, 23, 29, 33, 38 21 true, 3

12, 18, 21, 23, 32 23 true, 4

21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 26

Path testing

� The objective of path testing is to ensure that the

set of test cases is such that each path through the

program is executed at least once

� The starting point for path testing is a program

flow graph that shows nodes representing

program decisions and arcs representing the flow

of control

� Statements with conditions are therefore nodes in

the flow graph

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 27

� Describes the program control flow. Each branch

is shown as a separate path and loops are shown

by arrows looping back to the loop condition

node

� Used as a basis for computing the cyclomatic

complexity

� Cyclomatic complexity = Number of edges -

Number of nodes +2

Program flow graphs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 28

� The number of tests to test all control

statements equals the cyclomatic complexity

� Cyclomatic complexity equals number of

conditions in a program

� Useful if used with care. Does not imply

adequacy of testing.

� Although all paths are executed, all combinations

of paths are not executed

Cyclomatic complexity

Binary search flow graph

1

2

3

4

65

7

while bottom <= top

if (elemArray [mid] == key

(if (elemArray [mid]< key8

9

bottom > top

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 30

� 1, 2, 3, 8, 9

� 1, 2, 3, 4, 6, 7, 2

� 1, 2, 3, 4, 5, 7, 2

� 1, 2, 3, 4, 6, 7, 2, 8, 9

� Test cases should be derived so that all of these

paths are executed

� A dynamic program analyser may be used to

check that paths have been executed

Independent paths

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 31

Integration testing

� Tests complete systems or subsystems composed

of integrated components

� Integration testing should be black-box testing

with tests derived from the specification

� Main difficulty is localising errors

� Incremental integration testing reduces this

problem

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 32

Incremental integration testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence
1

Test sequence
2

Test sequence
3

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 33

Approaches to integration testing

� Top-down testing

• Start with high-level system and integrate from the

top-down replacing individual components by stubs

where appropriate

� Bottom-up testing

• Integrate individual components in levels until the

complete system is created

� In practice, most integration involves a

combination of these strategies

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 34

Top-down testing

Level 2Level 2Level 2Level 2

Level 1 Level 1
Testing

sequence

Level 2
stubs

Level 3
stubs

. . .

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 35

Bottom-up testing

Level NLevel NLevel NLevel NLevel N

Level N–1 Level N–1Level N–1

Testing
sequence

Test
drivers

Test
drivers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 36

Tetsing approaches

� Architectural validation

• Top-down integration testing is better at discovering

errors in the system architecture

� System demonstration

• Top-down integration testing allows a limited

demonstration at an early stage in the development

� Test implementation

• Often easier with bottom-up integration testing

� Test observation

• Problems with both approaches. Extra code may be

required to observe tests

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 37

� Takes place when modules or sub-systems are

integrated to create larger systems

� Objectives are to detect faults due to interface

errors or invalid assumptions about interfaces

� Particularly important for object-oriented

development as objects are defined by their

interfaces

Interface testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 38

Interface testing
Test
cases

BA

C

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 39

Interfaces types

� Parameter interfaces

• Data passed from one procedure to another

� Shared memory interfaces

• Block of memory is shared between procedures

� Procedural interfaces

• Sub-system encapsulates a set of procedures to be

called by other sub-systems

� Message passing interfaces

• Sub-systems request services from other sub-systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 40

Interface errors

� Interface misuse

• A calling component calls another component and

makes an error in its use of its interface e.g. parameters

in the wrong order

� Interface misunderstanding

• A calling component embeds assumptions about the

behaviour of the called component which are incorrect

� Timing errors

• The called and the calling component operate at

different speeds and out-of-date information is accessed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 41

Interface testing guidelines

� Design tests so that parameters to a called

procedure are at the extreme ends of their ranges

� Always test pointer parameters with null pointers

� Design tests which cause the component to fail

� Use stress testing in message passing systems

� In shared memory systems, vary the order in

which components are activated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 42

Stress testing

� Exercises the system beyond its maximum design

load. Stressing the system often causes defects to

come to light

� Stressing the system test failure behaviour..

Systems should not fail catastrophically. Stress

testing checks for unacceptable loss of service or

data

� Particularly relevant to distributed systems

which can exhibit severe degradation as a

network becomes overloaded

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 43

� The components to be tested are object classes

that are instantiated as objects

� Larger grain than individual functions so

approaches to white-box testing have to be

extended

� No obvious ‘top’ to the system for top-down

integration and testing

Object-oriented testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 44

Testing levels

� Testing operations associated with objects

� Testing object classes

� Testing clusters of cooperating objects

� Testing the complete OO system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 45

Object class testing

� Complete test coverage of a class involves

• Testing all operations associated with an object

• Setting and interrogating all object attributes

• Exercising the object in all possible states

� Inheritance makes it more difficult to design

object class tests as the information to be tested is

not localised

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 46

Weather station object interface

� Test cases are needed for all

operations

� Use a state model to identify

state transitions for testing

� Examples of testing sequences

• Shutdown →Waiting →Shutdown

• Waiting → Calibrating → Testing →

Transmitting →Waiting

• Waiting → Collecting → Waiting →

Summarising → Transmitting →

Waiting

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 47

Object integration

� Levels of integration are less distinct in object-

oriented systems

� Cluster testing is concerned with integrating and

testing clusters of cooperating objects

� Identify clusters using knowledge of the operation

of objects and the system features that are

implemented by these clusters

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 48

Approaches to cluster testing

� Use-case or scenario testing

• Testing is based on a user interactions with the system

• Has the advantage that it tests system features as

experienced by users

� Thread testing

• Tests the systems response to events as processing

threads through the system

� Object interaction testing

• Tests sequences of object interactions that stop when

an object operation does not call on services from

another object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 49

Scenario-based testing

� Identify scenarios from use-cases and supplement

these with interaction diagrams that show the

objects involved in the scenario

� Consider the scenario in the weather station

system where a report is generated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 50

Collect weather data

:CommsController

request (report)

acknowledge ()
report ()

summarise ()

reply (report)

acknowledge ()

send (report)

:WeatherStation :WeatherData

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 51

Weather station testing

� Thread of methods executed

• CommsController:request →

WeatherStation:report →

WeatherData:summarise

� Inputs and outputs

• Input of report request with associated acknowledge

and a final output of a report

• Can be tested by creating raw data and ensuring that

it is summarised properly

• Use the same raw data to test the WeatherData object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 52

Testing workbenches

� Testing is an expensive process phase. Testing

workbenches provide a range of tools to reduce

the time required and total testing costs

� Most testing workbenches are open systems

because testing needs are organisation-specific

� Difficult to integrate with closed design and

analysis workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 53

A testing workbench

Dynamic
analyser

Program
being tested

Test
results

Test
predictions

File
comparator

Execution
report Simulator

Source
code

Test
manager Test data Oracle

Test data
generator Specification

Report
generator

Test results
report

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 54

Tetsing workbench adaptation

� Scripts may be developed for user interface

simulators and patterns for test data generators

� Test outputs may have to be prepared manually

for comparison

� Special-purpose file comparators may be

developed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 55

Key points

� Test parts of a system which are commonly used

rather than those which are rarely executed

� Equivalence partitions are sets of test cases where

the program should behave in an equivalent way

� Black-box testing is based on the system

specification

� Structural testing identifies test cases which cause

all paths through the program to be executed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 56

Key points

� Test coverage measures ensure that all statements

have been executed at least once.

� Interface defects arise because of specification

misreading, misunderstanding, errors or invalid

timing assumptions

� To test object classes, test all operations,

attributes and states

� Integrate object-oriented systems around clusters

of objects

