Defect testing

o Testing programs to establish
the presence of system defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 1

Objectives

o To understand testing techniques that are geared
to discover program faults

o To introduce guidelines for interface testing

« To understand specific approaches to object-
oriented testing

o To understand the principles of CASE tool
support for testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 2

Topics covered

o Defect testing

o Integration testing

o Object-oriented testing
o Testing workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 3

The testing process

o Component testing
* Testing of individual program components

* Usually the responsibility of the component
developer (except sometimes for critical systems)

* Tests are derived from the developer’s experience

o Integration testing

» Testing of groups of components integrated to create
a system or sub-system

* The responsibility of an independent testing team
» Tests are based on a system specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 4

Testing phases

Integration
testing

Component
testing

Software developer Independent testing team

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 5

Defect testing

o The goal of defect testing is to discover defects in
programs

o A successful defect test is a test which causes a
program to behave in an anomalous way

o Tests show the presence not the absence of
defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 6

Testing priorities

e Only exhaustive testing can show a program is
free from defects. However, exhaustive testing
1s impossible

o Tests should exercise a system's capabilities
rather than its components

o Testing old capabilities is more important than
testing new capabilities

o Testing typical situations is more important than
boundary value cases

©Jan Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 7

Test data and test cases

o Test data Inputs which have been devised to
test the system

o Test cases Inputs to test the system and the
predicted outputs from these inputs if the
system operates according to its specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide &

The defect testing process

Test Test Test Test
71 cases data results reports

Design test Prepare test Run program Compare result
cases data with test data to test cases
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 9

Black-box testing

o An approach to testing where the program is
considered as a ‘black-box’

o The program test cases are based on the system

specification
o Test planning can begin early in the software
process
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 10

Black-box testing

Inputs causing
anomalous
Input test data behaviour

Outputs which reveal
the presence of
Output test results defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 11

Equivalence partitioning

o Input data and output results often fall into
different classes where all members of a class are
related

o Each of these classes is an equivalence partition
where the program behaves in an equivalent way
for each class member

o Test cases should be chosen from each partition

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 12

Equivalence partitioning

DS

Invalid inputs Valid inputs

e

Outputs

Equivalence partitioning

« Partition system inputs and outputs into

‘equivalence sets’
e Ifinput is a 5-digit integer between 10,000 and 99,999,
equivalence partitions are <10,000, 10,000-99, 999 and >
10, 000
o Choose test cases at the boundary of these

sets
« 00000, 09999, 10000, 99999, 10001

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 13 ©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 14
Equivalence partitions Search routine specification
3 11
4 7 10 procedure Search (Key : ELEM ; T: ELEM_ARRAY;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;
Less than 4 Between 4 and 10 More than 1 Pre-condition
-- the array has at least one element
TFIRST <= TLAST
Number of input values Post-condition
-- the element is found and is referenced by L
9999 100000 (Found and T (L) = Key)
10000 50000 9999 or
-- the element is not in the array
(not Found and
| Less than 10000| Between 10000 and 999j9 More than 99999 ' not (exists I, TFIRST >=1 <= TLAST, T (i) = Key))
Input values
©Jan Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 15 ©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 16

Search routine - input partitions

o Inputs which conform to the pre-conditions
o Inputs where a pre-condition does not hold
o Inputs where the key element is a member of

Testing guidelines (sequences)

o Test software with sequences which have only a
single value

o Use sequences of different sizes in different tests

the array o Derive tests so that the first, middle and last
o Inputs where the key element is not a member elements of the sequence are accessed
of the array o Test with sequences of zero length
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 17 ©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 18
Search routine - input partitions Structural testing
Array Element . . .
Single value In sequence o Sometime called white-box testing
Single value Not in sequence Derivati ftest dine t
More than 1 value First element in sequence ° crivation ol test cascs according to Program
More than 1 value Last element in sequence structure. Knowledge of the program 18 used to
More than 1 value MldQIe element in sequence i dentify additional test cases
More than 1 value Not in sequence
o Objective is to exercise all program statements
(not all path combinations)
Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17,29,21,23 17 true, 1
41, 18,9, 31, 30, 16, 45 45 true, 7
17, 18,21, 23,29, 41, 38 23 true, 4
21, 23,29, 33,38 25 false, ??
©Jan Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 19 ©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 20

White-box testing

Test data

Tests Derives

Test
outputs

Component
code

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 20 Slide 21

class BinSearch {

/I This is an encapsulation of a binary search function that takes an array of

/I ordered objects and a key and returns an object with 2 attributes namely

/l index - the value of the array index

// found - a boolean indicating whether or not the key is in the array

/I An object is returned because it is not possible in J ava to pass basic types by
/I reference to a function and so return two values

I/ the key is -1 if the element is not found

public static void search (int key, int [] elemArray, Result r)
{
int bottom =0 ;
int top = elemArray.length - 1;
intmid ;
r.found = false ; rindex = -1 ;
while (bottom <= top)
{
mid = (top + bottom) /2 ;
if (elemArray [mid] == key)

r.index = mid ;
r.found = true ;
return ;

}/1'if part

else

if (elemArray [mid] < key)
bottom =mid + 1;
else
top=mid-1;

} .
} fwhile 100p Binary search (Java)
} /I search
} //BinSearch

Binary search - equiv. partitions

« Pre-conditions satisfied, key element in array

» Pre-conditions satisfied, key element not in
array

o Pre-conditions unsatisfied, key element in array

o Pre-conditions unsatisfied, key element not in
array

o Input array has a single value
o Input array has an even number of values
o Input array has an odd number of values

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 23

Binary search equiv. partitions

Equivalence class boundaries

Y YYY

Y

Elements > Mid

Elements < Mid

Mid-point

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 24

Binary search - test cases

Path testing

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0 false, ??
17,21,23,29 17 true, 1

9,16, 18, 30, 31,41, 45 45 true, 7

17, 18,21, 23, 29, 38, 41 23 true, 4

17, 18,21, 23,29, 33, 38 21 true, 3

12, 18,21, 23, 32 23 true, 4

21, 23,29, 33, 38 25 false, ??
©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 25

o The objective of path testing is to ensure that the
set of test cases 1s such that each path through the
program is executed at least once

o The starting point for path testing is a program
flow graph that shows nodes representing
program decisions and arcs representing the flow

of control
o Statements with conditions are therefore nodes in
the flow graph
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 26

Program flow graphs

o Describes the program control flow. Each branch
is shown as a separate path and loops are shown
by arrows looping back to the loop condition
node

o Used as a basis for computing the cyclomatic
complexity

o Cyclomatic complexity = Number of edges -
Number of nodes +2

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 27

Cyclomatic complexity

o The number of tests to test all control
statements equals the cyclomatic complexity

o Cyclomatic complexity equals number of
conditions in a program

o Useful if used with care. Does not imply
adequacy of testing.

o Although all paths are executed, all combinations
of paths are not executed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 28

bottom > top

Independent paths

Binary search flow graph

e 1,2,3,8,9

e 1,2,3,4,6,7,2

e 1,2,3,4,5,7,2

e 1,2,3,4,6,7,2,8,9

o Test cases should be derived so that all of these
paths are executed

e A dynamic program analyser may be used to
check that paths have been executed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 30

Integration testing

o Tests complete systems or subsystems composed
of integrated components

o Integration testing should be black-box testing
with tests derived from the specification

e Main difficulty is localising errors

o Incremental integration testing reduces this
problem

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 31

Incremental integration testing

By

T3

=l

Jeyeye
a
000¢
BN ENENE

00600

Test sequence Test sequence Test sequence
1 2 3
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 32

Approaches to integration testing

o Top-down testing

» Start with high-level system and integrate from the
top-down replacing individual components by stubs
where appropriate

» Bottom-up testing

* Integrate individual components in levels until the
complete system is created

 In practice, most integration involves a
combination of these strategies

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 33

Top-down testing

Testing

Level 2 Level 2 Level 2 Level 2
Level 2
stubs

Level 3
stubs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 34

Bottom-up testing

dzs:is;) ;) ;) ;) ;)

Test
drivers

Testing
sequence

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 35

Tetsing approaches

e Architectural validation

» Top-down integration testing is better at discovering
errors in the system architecture

o System demonstration

* Top-down integration testing allows a limited
demonstration at an early stage in the development

o Test implementation

» Often easier with bottom-up integration testing

o Test observation

* Problems with both approaches. Extra code may be

required to observe tests
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 36

Interface testing

o Takes place when modules or sub-systems are
integrated to create larger systems

« Objectives are to detect faults due to interface
errors or invalid assumptions about interfaces

« Particularly important for object-oriented
development as objects are defined by their
interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 37

Interface testing

cases

Test

-

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 38

Interfaces types

o Parameter interfaces

» Data passed from one procedure to another

o Shared memory interfaces

* Block of memory is shared between procedures

e Procedural interfaces

* Sub-system encapsulates a set of procedures to be
called by other sub-systems

o Message passing interfaces

* Sub-systems request services from other sub-systems

©Jan Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 39

Interface errors

¢ Interface misuse

* A calling component calls another component and
makes an error in its use of its interface e.g. parameters
in the wrong order

o Interface misunderstanding

* A calling component embeds assumptions about the
behaviour of the called component which are incorrect

o Timing errors

* The called and the calling component operate at
different speeds and out-of-date information is accessed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 40

Interface testing guidelines

o Design tests so that parameters to a called
procedure are at the extreme ends of their ranges

o Always test pointer parameters with null pointers
o Design tests which cause the component to fail
o Use stress testing in message passing systems

o In shared memory systems, vary the order in
which components are activated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 41

Stress testing

o Exercises the system beyond its maximum design
load. Stressing the system often causes defects to
come to light

o Stressing the system test failure behaviour..
Systems should not fail catastrophically. Stress
testing checks for unacceptable loss of service or
data

o Particularly relevant to distributed systems
which can exhibit severe degradation as a
network becomes overloaded

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 42

Object-oriented testing

o The components to be tested are object classes
that are instantiated as objects

o Larger grain than individual functions so
approaches to white-box testing have to be
extended

« No obvious ‘top’ to the system for top-down
integration and testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 43

Testing levels

o Testing operations associated with objects
o Testing object classes

o Testing clusters of cooperating objects

o Testing the complete OO system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 44

Object class testing

o Complete test coverage of a class involves
» Testing all operations associated with an object
» Setting and interrogating all object attributes
* Exercising the object in all possible states
o Inheritance makes it more difficult to design
object class tests as the information to be tested is
not localised

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 45

Weather station object interface

WeatherStation o Test cases are needed for all

identifier operations

reportWeather () o Use a state model to identify
calibrate (instruments) . .

test () state transitions for testing

startup (instruments) .
shutdown (instruments) | ¢ Examples of testing sequences

e Shutdown — Waiting — Shutdown

* Waiting — Calibrating — Testing —
Transmitting — Waiting

e Waiting — Collecting — Waiting —
Summarising — Transmitting —
Waiting

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 46

Object integration

« Levels of integration are less distinct in object-
oriented systems

o Cluster testing is concerned with integrating and
testing clusters of cooperating objects

o Identify clusters using knowledge of the operation
of objects and the system features that are
implemented by these clusters

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 47

Approaches to cluster testing

o Use-case or scenario testing
» Testing is based on a user interactions with the system
* Has the advantage that it tests system features as
experienced by users
o Thread testing
+ Tests the systems response to events as processing
threads through the system
o Object interaction testing

+ Tests sequences of object interactions that stop when
an object operation does not call on services from
another object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 48

Scenario-based testing

o Identify scenarios from use-cases and supplement
these with interaction diagrams that show the
objects involved in the scenario

e Consider the scenario in the weather station
system where a report is generated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 49

Collect weather data

% [:CommsControIIer] [:WeatherStation] [:WeatherData

1 request (report)

acknowledge ()
~——

report ()

summarise ()

send (report)
reply (report)

E acknowledge ()
_—

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 50

Weather station testing

e Thread of methods executed

» CommsController:request —
WeatherStation:report -
WeatherData:summarise

o Inputs and outputs

* Input of report request with associated acknowledge
and a final output of a report

* Can be tested by creating raw data and ensuring that
it is summarised properly

* Use the same raw data to test the WeatherData object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 51

Testing workbenches

o Testing is an expensive process phase. Testing
workbenches provide a range of tools to reduce
the time required and total testing costs

o Most testing workbenches are open systems
because testing needs are organisation-specific

« Difficult to integrate with closed design and
analysis workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 52

A testing workbench

Test data
generator

Specification

Test
manager

Source
code

Dynamic
analyser
| Execution. (. J
report Simulator

Test data

Test
results

Test
predictions

File
comparator

Program
being tested

Report Test results
generator report
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 53

Tetsing workbench adaptation

o Scripts may be developed for user interface
simulators and patterns for test data generators

o Test outputs may have to be prepared manually
for comparison

o Special-purpose file comparators may be
developed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 54

Key points

o Test parts of a system which are commonly used
rather than those which are rarely executed

« Equivalence partitions are sets of test cases where
the program should behave in an equivalent way

o Black-box testing is based on the system
specification

o Structural testing identifies test cases which cause
all paths through the program to be executed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 55

Key points

» Test coverage measures ensure that all statements
have been executed at least once.

« Interface defects arise because of specification
misreading, misunderstanding, errors or invalid
timing assumptions

« To test object classes, test all operations,
attributes and states

» Integrate object-oriented systems around clusters
of objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 56

