
204362 – Object-Oriented Design

Object Interaction – Sequence Diagrams

Adapted for 204362

by Areerat Trongratsameethong

Bennett, McRobb and Farmer, Object Oriented Systems Analysis and Design Using UML

4th Edition, McGraw Hill, 2010

In This Lecture You Will Learn:

• how to develop object interaction from use

cases;

• how to model object interaction using an

interaction sequence diagram;

• how to cross-check between interaction

diagrams and a class diagram.

© 2010 Bennett, McRobb and Farmer 2

Object Messaging

© 2010 Bennett, McRobb and Farmer 3

Objects communicate by sending messages.

Sending the message getCost() to an Advert

object, might use the following syntax.

currentadvertCost = anAdvert.getCost()

:Campaign anAdvert:Advert

getCost

Resilience of

Design

© 2010 Bennett, McRobb and Farmer 4

Real-world

requirements

Application that caters

for these requirements

Equivalent areas of

change—a highly

resilient system.

A small change in

requirements causes a

much greater change in

software—not a resilient

system.

Real-world

requirements

Application that caters

for these requirements

Interaction & Collaboration

• A collaboration is a group of objects or classes

that work together to provide an element of

functionality or behaviour.

• An interaction defines the message passing

between lifelines (e.g. objects) within the

context of a collaboration to achieve a

particular behaviour.

© 2010 Bennett, McRobb and Farmer 5

Modelling Interactions

• Interactions can be modelled using various

notations

– Interaction sequence diagrams

– Communication diagrams

– Interaction overview diagrams

– Timing diagrams

© 2010 Bennett, McRobb and Farmer 6

Sequence Diagrams

• Shows an interaction between lifelines (e.g. objects)

arranged in a time sequence.

• Can be drawn at different levels of detail and to meet

different purposes at several stages in the

development life cycle.

• Typically used to represent the detailed object

interaction that occurs for one use case or for one

operation.

© 2010 Bennett, McRobb and Farmer 7

Sequence Diagrams

• Vertical dimension shows time.

• Objects (or subsystems or other connectable objects)
involved in interaction appear horizontally across the
page and are represented by lifelines.

• Messages are shown by a solid horizontal arrow.

• The execution or activation of an operation is shown
by a rectangle on the relevant lifeline.

© 2010 Bennett, McRobb and Farmer 8

Sequence diagram

© 2010 Bennett, McRobb and Farmer 9

:Client :Campaign :Advert

getName

listCampaigns

listAdverts

Advert
newAd:Advert

addNewAdvert

Lifeline Activation or Execution Object creation

:CampaignManager

sd Add a new advert to a campaign

loop

loop

Interaction Operator

Interaction Constraint

Combined Fragment

(loop)[For all client’s campaigns]

getCampaignDetails

[For all campaign’s adverts]

getAdvertDetails

Sequence

diagram is

enclosed in a

frame

Frame

label

Sequence Diagram

• Iteration is represented by combined fragment

rectangle with the interaction operator ‘loop’.

• The loop combined fragment only executes if the

guard condition in the interaction constraint

evaluates as true.

• Object creation is shown with the construction arrow

(dashed) going to the object symbol for the Advert

lifeline.

© 2010 Bennett, McRobb and Farmer 10

Synchronous Message

• A synchronous message or procedural call is

shown with a full arrowhead, causes the

invoking operation to suspend execution until

the focus of control has been returned to it.

© 2010 Bennett, McRobb and Farmer 11

Further Notation

© 2010 Bennett, McRobb and Farmer 12

:LifelineA :LifelineB
Synchronous

(blocking)

message

sd Interaction Name

msg a

Send message

Event Occurrence

(msg.sendEvent)

Receive messaged

Event Occurrence

(msg.recieveEvent)

start of

Execution

Occurrence

end of

Execution

Occurrence

Execution

Occurrence

Active

State on lifeline

showing pre-condition

Message reply

showing return of

control

Boundary & Control Classes

• Most use cases imply at least one boundary object

that manages the dialogue between the actor and

the system – in the next sequence diagram it is

represented by the lifeline :AddAdvertUI

• The control object is represented by the lifeline

:AddAdvert and this manages the overall object

communication.

© 2010 Bennett, McRobb and Farmer 13 © 2010 Bennett, McRobb and Farmer 14

:Client :Campaign :Advert

listCampaigns

listAdverts

Advert
newAd:Advert

:CampaignManager

sd Add a new advert to a campaign

loop

loop

:AddAdvertUI

:AddAdvert

addNewAdvert

getClient

selectClient

loop

selectCampaign

addNewAdvert

getCampaignDetails

startInterface

[For all clients]

showClientCampaigns

showCampaignAdverts

createNewAdvert

[For all client’s campaigns]

[For all campaign’s adverts]

getAdvertDetails

Boundary

lifeline

Control

lifeline

Object Destruction

© 2010 Bennett, McRobb and Farmer 15

listAdverts

deleteAdvert

Object destruction

:Campaign :Advert

delete

getAdvertDetails

X

loop

sd Delete advert

Reflexive Messages

© 2010 Bennett, McRobb and Farmer 16

:Client :Campaign :Advert

getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

loop

loop

getOverheads

[For all client’s campaigns]

[For all campaign’s adverts]

Reflexive

message

Focus of Control

• Indicates times during an activation when processing

is taking place within that object.

• Parts of an activation that are not within the focus of

control represent periods when, for example, an

operation is waiting for a return from another object.

• May be shown by shading those parts of the

activation rectangle that correspond to active

processing by an operation.

© 2010 Bennett, McRobb and Farmer 17

Focus of Control

© 2010 Bennett, McRobb and Farmer 18

:Client :Campaign :Advert

getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManag

er

sd Check campaign budget

loop

loop

getOverheads

budget =

checkCampaignBudget

[For all client’s campaigns]

[For all campaign’s adverts]

Shading showing the

focus of control

Reply with the return-

value shown

Reply Message

• A reply message returns the control to the

object that originated the message that began

the activation.

• Reply messages are shown with a dashed

arrow, but it is optional to show them at all

since it can be assumed that control is

returned to the originating object at the end

of the activation.

© 2010 Bennett, McRobb and Farmer 19

Object Selector Notation

© 2010 Bennett, McRobb and Farmer 20

:Client campaign[i]

:Campaign

advert[j]

:Advert
getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

loop

loop

getOverheads

[i=1;i<=campaign.count; i++]

[j=1;j<=advert.count; j++]

Object selector notation

Interaction constraint

refers to variable used in

object selector notation

Interaction Operators

© 2010 Bennett, McRobb and Farmer 21

:Client campaign[i]

:Campaign

advert[j]

:Advert
getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

getOverheads

loop (1, *)

Interaction

Operator with

parameters

loop (1, *)

[i<=campaign.count]

[j<=advert.count]

© 2010 Bennett, McRobb and Farmer 22

:Client :Campaign :Advert

getName

listCampaigns ref

ref

:CampaignManager

Advert

addCostedAdvert

newAd:Advert

newRequest:Request

alt

[else]

sd Add a new advert to a campaign if within budget

List client campaigns

[totalCost <= budget]

Request

Get campaign budget

alt interaction operator

shows branching

Two interaction

operands, one for each

alternative

Handling Complexity

• Complex interactions can be modelled using

various different techniques

– Interaction fragments

– Lifelines for subsystems or groups of objects

– Continuations

– Interaction Overview Diagrams (see later lecture)

© 2010 Bennett, McRobb and Farmer 23

Using Interaction Fragments

© 2010 Bennett, McRobb and Farmer 24

:Client :Campaign :Advert

getName

listCampaigns

:CampaignManag

er

sd Check campaign budget

ref

ref

Gate showing the

message enter this

interaction occurrence

List client campaigns

Get campaign budget

ref interaction operator

indicates interaction

occurrence that

references an

interaction fragment

Interaction Fragment

© 2010 Bennett, McRobb and Farmer 25

:Client :Campaign

listCampaigns

getCampaignDetails

sd List client campaigns

loop

Gate showing the

message enter this

Interaction Fragment

[For all client’s campaigns]

Interaction fragment that is

referenced in
Check campaign budget

sequence diagram

Interaction Fragment

© 2010 Bennett, McRobb and Farmer 26

:Campaign :Advert

getCost

sd Get campaign budget

loop

getOverheads

checkCampaignBudget

:CampaignManager

[For all campaign’s adverts]

Interaction fragment that is

also referenced in
Check campaign budget

sequence diagram

© 2010 Bennett, McRobb and Farmer 27

:ClientCampaigns

ref ClientCampaignAds

listCampaigns

listAdverts

:CampaignManager

sd Add a new advert to a campaign

:AddAdvertUI

:AddAdvert

addNewAdvert

getClient

selectClient

loop

selectCampaign

[For all clients]

showClientCampaigns

startInterface

showCampaignAdverts

addNewAdvert
createNewAdvert

Lifeline representing the

interaction between a

group of objects

© 2010 Bennett, McRobb and Farmer 28

:Client :Campaign :Advert

listCampaigns

listAdverts

Advert newAd:Advert

sd ClientCampaignAds

loop

loop

addNewAdvert

getClient

[For all client’s campaigns]

getCampaignDetails

[For all campaign’s adverts]

getAdvertDetails

Sequence diagram

referenced in the
Add a new advert to

a campaign sequence

diagram

Using Continuations

© 2010 Bennett, McRobb and Farmer 29

getCost

getCost

Within budget

Budget spentBudget spent

:LifelineA :LifelineB :LifelineC

alt

sd Calculate costs

[else]

ref
Identify under spend

[Within

budget]

Within budget

:LifelineA :LifelineB :LifelineC

ref

alt

sd Authorize expenditure

[else]

authorize

stopExpenditure

[Within

budget]

Calculate costs

Continuations are used to link

sequence diagrams

Asynchronous Message

• An asynchronous message, drawn with an

open arrowhead, does not cause the invoking

operation to halt execution while it awaits a

return.

© 2010 Bennett, McRobb and Farmer 30

Further Notation

© 2010 Bennett, McRobb and Farmer 31

:ClassA :ClassB

{t..t + 28}

t = now Asynchronous

message with

duration

constraint

Callback

Duration

constraint

An active

object

sd Interaction Name

{d..d*3}

Duration

observation

Time

constraint

using

construction

marks

Note explaining

some aspect of this

execution

occurrence

Interaction Operators
Interaction

Operator

Explanation and use

alt Alternatives represents alternative behaviours, each choice of behaviour being shown in a separate
operand. The operand whose interaction constraint is evaluated as true executes.

opt Option describes a single choice of operand that will only execute if its interaction constraint evaluates
as true.

break Break indicates that the combined fragment is performed instead of the remainder of the enclosing
interaction fragment.

par Parallel indicates that the execution operands in the combined fragment may be merged in any
sequence once the event sequence in each operand is preserved.

seq Weak Sequencing results in the ordering of each operand being maintained but event occurrence from
different operands on different lifelines may occur in any order. The order of event occurrences on
common operands is the same as the order of the operands.

strict Strict Sequencing imposes a strict sequence on execution of the operands but does not apply to nested
fragments.

neg Negative describes an operand that is invalid.

critical Critical Region imposes a constraint on the operand that none of its event occurrences on the lifelines
in the region can be interleaved.

ignore Ignore indicates the message types, specified as parameters, that should be ignored in the interaction.

consider Consider states which messages should be consider in the interaction. This is equivalent to stating that
all others should be ignored.

assert Assertion states that the sequence of messaging in the operand is the only valid continuation.

loop Loop is used to indicate an operand that is repeated a number times until the interaction constraint for
the loop is no longer true.

© 2010 Bennett, McRobb and Farmer
32

Guidelines for Sequence Diagrams

1. Decide at what level you are modelling the
interaction.

2. Identify the main elements involved in the
interaction.

3. Consider the alternative scenarios that may
be needed.

4. Identify the main elements involved in the
interaction.

© 2010 Bennett, McRobb and Farmer 33

Guidelines for Sequence Diagrams

5. Draw the outline structure of the diagram.

6. Add the detailed interaction.

7. Check for consistency with linked sequence
diagrams and modify as necessary.

8. Check for consistency with other UML
diagrams or models.

© 2010 Bennett, McRobb and Farmer 34

Model Consistency

• The allocation of operations to objects must be
consistent with the class diagram and the
message signature must match that of the
operation.

– Can be enforced through CASE tools.

• Every sending object must have the object
reference for the destination object.

– Either an association exists between the classes or
another object passes the reference to the sender.

– This issue is key in determining association design
Message pathways should be carefully analysed.

© 2010 Bennett, McRobb and Farmer 35

Model Consistency

• All forms of interaction diagrams used should
be consistent.

• Messages on interaction diagrams must be
consistent with the state machine for the
participating objects.

• Implicit state changes in interactions diagrams
must be consistent with those explicitly
modelled in state machine.

© 2010 Bennett, McRobb and Farmer 36

Summary

In this lecture you have learned about:

• how to develop object interaction from use

cases;

• how to model object interaction using an

interaction sequence diagram;

• how to cross-check between interaction

diagrams and a class diagram.

© 2010 Bennett, McRobb and Farmer 37

References

• UML Reference Manual (OMG, 2009)

• Bennett, Skelton and Lunn (2005)

(For full bibliographic details, see Bennett, McRobb

and Farmer)

© 2010 Bennett, McRobb and Farmer 38

