
Object-Oriented and Classical Software Engineering
Sixth Edition, WCB/McGraw-Hill, 2005

Stephen R. Schach
srs@vuse.vanderbilt.edu

1

OBJECT-ORIENTED

ANALYSIS

Part I

Overview
• The analysis workflow

• Extracting the model/entity classes

• Object-oriented analysis: The elevator problem case study

• Functional modeling: The elevator problem case study

• Entity class modeling: The elevator problem case study

• Dynamic modeling: The elevator problem case study

• The test workflow: Object-oriented analysis

• Extracting the boundary and control classes

• The initial functional model: The Osbert Oglesby case study

• The initial class diagram: The Osbert Oglesby case study

• The initial dynamic model: The Osbert Oglesby case study

• Extracting the boundary classes: The Osbert Oglesby case study

• Extracting the boundary classes: The Osbert Oglesby case study 2

Object-Oriented Analysis

• OOA is a semiformal analysis technique for the object-
oriented paradigm

• There are over 60 equivalent techniques

• Today, the Unified Process is the only viable alternative

• During this workflow

• The classes are extracted

• Remark

• The Unified Process assumes knowledge of class extraction
3

The Analysis Workflow
• The analysis workflow has two aims

• Obtain a deeper understanding of the requirements

• Describe them in a way that will result in a maintainable design and
implementation

• There are three types of classes:

• Model/Entity classes: Models long-lived information

• Examples: Account Class, Painting Class

• Boundary classes: Models the interaction between the product and the
environment. A boundary class is generally associated with input or
output

• Examples: Purchases Report Class, Sales Report Class (report is one kind of output)

• Control classes: Models complex computations and algorithms

• Examples: Compute Masterpiece Price Class, Compute Masterwork Price Class,
Compute Other Painting Price Class

4

UML Notation for These Three Class Types

• Stereotypes (extensions of UML)

5

or

Model Class

Extracting the Model/Entity Classes

• Perform the following three steps incrementally and
iteratively

• Functional modeling

• Present scenarios of all the use cases (a scenario is an instance of a
use case)

• Class modeling

• Determine the model/entity classes and their attributes

• Determine the interrelationships and interactions between the
model/entity classes

• Present this information in the form of a class diagram

• Dynamic modeling

• Determine the operations performed by or to each model/entity class

• Present this information in the form of a statechart 6

Object-Oriented Analysis: The Elevator Problem Case Study

A product is to be installed to control n elevators in a building with
m floors. The problem concerns the logic required to move elevators
between floors according to the following constraints:

1. Each elevator has a set of m buttons, one for each floor. These
illuminate when pressed and cause the elevator to visit the
corresponding floor. The illumination is canceled when the
corresponding floor is visited by the elevator

2. Each floor, except the first and the top floor, has two buttons, one to
request an up-elevator, one to request a down-elevator. These
buttons illuminate when pressed. The illumination is canceled when
an elevator visits the floor, then moves in the desired direction

3. If an elevator has no requests, it remains at its current floor with its
doors closed

7

Functional Modeling: The Elevator Problem Case Study

• A use case describes the interaction between

• The product, and

• The actors (external users)

• For the elevator problem, there are only two possible
use cases

• Press an Elevator Button, and

• Press a Floor Button

8

Scenarios

• A use case provides a generic description of the
overall functionality

• A scenario (สถานการณท์ี�นาํเสนอในรูปของ step flow) is an
instance of a use case

• Sufficient scenarios need to be studied to get a
comprehensive insight into the target product being
modeled

9

Normal Scenario: Elevator Problem

10

Exception Scenario: Elevator Problem

11

Entity Class Modeling : The Elevator Problem Case Study

• Extract classes and their attributes

• Represent them using a UML diagram

• One alternative: Deduce (อนมุาน) the classes from use cases

and their scenarios

• Possible danger: Often there are many scenarios, and hence

• Too many candidate classes

• Other alternatives:

• CRC cards (if you have domain knowledge)

• Noun extraction
12

Noun Extraction

• A two-stage process

• Stage 1. Concise problem definition

• Describe the software product in single paragraph

• Buttons in elevators and on the floors control the movement of n elevators in a
building with m floors.

• Buttons illuminate when pressed to request the elevator to stop at a specific floor; the
illumination is canceled when the request has been satisfied.

• When an elevator has no requests, it remains at its current floor with its doors closed

• Stage 2. Identify the nouns

• Identify the nouns in the informal strategy

• Buttons in elevators and on the floors control the movement of n elevators in a
building with m floors. Buttons illuminate when pressed to request the elevator to stop
at a specific floor; the illumination is canceled when the request has been satisfied.
When an elevator has no requests, it remains at its current floor with its doors closed

• Use the nouns as candidate classes 13

Noun Extraction (contd)

• Nouns

• button, elevator, floor, movement, building, illumination, request,
door

• floor, building, door are outside the problem boundary —
exclude

• movement, illumination, request are abstract nouns — exclude
(they may become attributes)

• Candidate classes:

• Elevator and Button

• Subclasses:

• Elevator Button and Floor Button 14

First Iteration of Class Diagram

• Problem

• Buttons do not communicate directly with elevators

• We need an additional class: Elevator Controller 15

Second Iteration of Class Diagram

• All relationships are
now 1-to-n

• This makes design and
implementation easier

16

CRC Cards
• Used since 1989 for OOA

• For each class, fill in a card showing

• Name of Class

• Functionality (Responsibility)

• List of classes it invokes (Collaboration)

• Now CRC cards are automated (CASE tool component)

• Strength

• When acted out by team members, CRC cards are a powerful tool for
highlighting missing or incorrect items

• Weakness

• If CRC cards are used to identify model/entity classes, domain expertise is
needed 17

Dynamic Modeling: The Elevator Problem Case Study

• Produce a UML
statechart

• State, event, and
predicate are
distributed over the
statechart

18

• This is shown by

considering specific

scenarios

• In fact, a statechart is

constructed by modeling

the events of the scenarios

The Test Workflow: Object-Oriented Analysis

• CRC cards are an excellent
testing technique

19

CRC Cards
• Consider responsibility

• 1. Turn on elevator button

• This is totally inappropriate for the object-oriented paradigm

• Responsibility-driven design has been ignored

• Information hiding has been ignored

• Responsibility

• 1. Turn on elevator button

should be

1. Send message to Elevator Button to turn itself on

• Also, a class has been overlooked (มองขา้ม)

• The elevator doors have a state that changes during execution (class characteristic)

• Add class Elevator Doors

• Safety considerations

• Modify the CRC card 20

Second Iteration of the CRC Card

21

• Having modified the class
diagram, reconsider the
• Use-case diagram (no

change)
• Class diagram (see the

next slide)
• Statecharts
• Scenarios (see the slide

after the next slide)

Third Iteration of Class Diagram

22

Second Iteration of the Normal Scenario:

23

• The object-oriented analysis
is now fine

• We should rather say:
• The object-oriented

analysis is fine for now

• We may need to return to
the object-oriented analysis
workflow during the object-
oriented design workflow

เพิ�ม send a message

-> เนื�องจาก encapsulation

และแบ่งแยกหนา้ที�ตาม MVC model

Extracting the Boundary and Control Classes

• Each

• Input screen,

• Output screen, and

• Report

is modeled by its own boundary class

• Each nontrivial computation (การคาํนวณที�ซบัซอ้น) is modeled by a

control class

24

The Initial Functional Model: Osbert Oglesby Case Study

• Recall the Osbert Oglesby use-case diagram:

25

First Scenario of Use Case Buy a Masterpiece

• Normal scenario

26

• Only four of the six paragraphs in the scenario are numbered

• The two unnumbered sentences

• “Osbert wishes to buy a masterpiece” and

• “Osbert makes an offer below the maximum purchase price — the offer is

accepted by the seller”

have nothing to do with the interaction between Osbert and the software product

• These unnumbered paragraphs are essentially comments

Second Scenario of Use Case Buy a Masterpiece

• Exception
scenario

Third Scenario of Use Case Buy a Masterpiece

 This is another

exception

scenario

27

Extended Scenario of Use Case Buy a Masterpiece

• Normal and exception scenarios can be combined into an extended
scenario

28

The Initial Class Diagram: The Osbert Oglesby Case Study

• The aim of entity modeling step is to extract the model/entity classes,
determine their interrelationships, and find their attributes

• Usually, the best way to begin this step is to use the two-stage noun
extraction method

• Noun Extraction

• Stage 1: Describe the software product in one paragraph:
• Reports are to be generated in order to improve the effectiveness of the

decision-making process for buying works of art.

• The reports contain buying and selling information about paintings, which are
classified as masterpieces, masterworks, and other paintings

• Stage 2: Identify the nouns in this paragraph
• Reports are to be generated in order to improve the effectiveness of the

decision-making process for buying works of art.

• The reports contain buying and selling information about paintings, which are
classified as masterpieces, masterworks, and other paintings 29

Noun Extraction: Osbert Oglesby (contd)

• The nouns are report, effectiveness, process, buying, work of art, selling,

information, painting, masterpiece, and masterwork

• effectiveness, process and information are abstract nouns and are
therefore unlikely to be entity classes

• Nouns buying and selling are derived from the verbs “buy” and “sell”

• They will probably be operations of some class

• Noun report is much more likely to be a boundary class than an entity
class

• Noun work of art is just a synonym for painting
30

First Iteration of the Initial Class Diagram

• This leaves four candidate entity classes:

• Painting Class, Masterpiece Class, Masterwork Class, and Other Painting Class

31

Second Iteration of the Initial Class Diagram

• Consider the interrelationships between the entity classes

• A masterpiece is a specific type of painting, and so is a masterwork
and an “other painting”

• Painting Class is therefore the base class

• Masterpiece Class, Masterwork Class, and Other Painting Class are
subclasses of that base class

32

• The class diagram does not reflect
aspects of the pricing algorithm

• When dealing with a masterwork
• “The software product first computes

the maximum purchase price as if it
were a masterpiece by the same artist”

• That is, a masterwork has to
have all the attributes of a
masterpiece (so that its maximum
purchase price can be computed
as if it were a masterpiece) and,
in addition, it may have attributes
of its own

Third Iteration of the Initial Class Diagram

33

Fourth Iteration of the Initial Class Diagram

• Another aspect of the pricing algorithm that is not reflected in
the current class diagram is

• “The software product computes the coefficient of similarity
between each painting for which there is an auction record and the
painting under consideration for purchase”

• Auctioned Painting Class is needed to make these
comparisons

• An auctioned painting must be a subclass of Painting Class

• But a painting previously been sold at an auction somewhere in the
world has nothing to do with paintings currently on display for sale
in Osbert’s gallery

34

Fourth Iteration of Initial Class Diagram (contd)

35

• An instance of Painting Class is
either

• A painting that Osbert has bought (an
instance of Gallery Painting Class), or

• A painting sold at some auction (an
instance of Auctioned Painting Class)

Fifth Iteration of the Initial Class Diagram

• A third aspect of the maximum price algorithm that
has not yet been modeled is fashionability

• “The software product computes the maximum purchase
price from the formula F  A , where F is a constant for
that artist (fashionability coefficient) …”

• Fashionability Class is needed

• A painting of Other Painting Class can then use the
instance of Fashionability Class for that artist to compute
the maximum price that Osbert should offer to pay

36

Fifth Iteration of the Initial Class Diagram (contd)

37

Initial Class Diagram:Osbert Oglesby (contd)

• Why was the first iteration of the class diagram so inadequate?
• The Osbert Oglesby case study appears to be a straightforward data-processing

application

• The one-paragraph description correctly did not incorporate the pricing
algorithm

• Unfortunately, the algorithmic details turned out to be critical to the
class diagram

• The first iteration of the class diagram was no good
• However, repeated iteration and increment led to a reasonable class diagram

• This demonstrates the power of the iterative and incremental approach

• Finally, we add the attributes of each class to the class diagram
• For the Osbert Oglesby case study, the result is shown on the next slide

• The empty rectangle at the bottom of each box will later be filled with
the operations of that class 38

Fifth Iteration of the Initial
Class Diagram (contd)

39

Fifth Iteration of the Initial Class Diagram (contd)

• Osbert Oglesby Application Class will
contain the operation that starts
execution of the whole software product

• The next slide shows the fifth iteration of
the initial class diagram, without the
attributes, but explicitly reflecting the
stereotypes

• All eight classes in that figure are entity
classes

• This is also a class diagram

• A class diagram depicts classes and
their interrelationships; attributes and
operations are optional

40

The Initial Dynamic Model: The Osbert Oglesby Case Study

• Dynamic modeling is the third step in extracting the entity classes

• A statechart is constructed that reflects all the operations performed by
or to the software product

• The operations
are determined
from the
scenarios

41

Initial statechart

Initial Dynamic Model: Osbert Oglesby (contd)

• The solid circle (top left) represents the initial state

• The white circle with the small black circle inside (top right)
represents the final state

• States other than the initial and final states are represented by
rectangles with rounded corners

• The arrows represent transitions from state to state

• In state Osbert Oglesby Event Loop, one of five events can occur:

• buy painting selected

• sell painting selected

• print report selected

• update fashionability selected

• quit selected
42

Initial Main Menu: Osbert Oglesby

• Graphical user interface (GUI)
• “Point and click”

• Dynamic Modeling

• In the object-oriented paradigm, there is a
dynamic model for each class, rather than
for the system as a whole, as in this case
study

• However, objects in this software
product never move from one class to
another class

• Accordingly, a dynamic model for the
software product as a whole is appropriate 43

Extracting the Boundary Classes: The Osbert Oglesby Case Study

• It is usually easy to extract
boundary classes

• Each input screen, output screen,
and printed report is generally
modeled by a boundary class

• One screen should be adequate
for all four Osbert Oglesby use
cases

• Thus there is one initial
boundary class

• User Interface Class

44

• A GUI needs special software

• However, a textual interface
runs on all computers

Initial Boundary Classes: Osbert Oglesby (contd)

• There are three reports:

• The purchases report

• The sales report

• The future trends report

• The content of each report is different

• Each report therefore has to be modeled by a separate boundary class

• There are therefore four initial boundary classes

45

