204362 — Object-Oriented Design

Use Case Models

Adapted for 204362
by Areerat Trongratsameethong

Bennett, McRobb and Farmer:
Object Oriented Systems Analysis and Design Using UML, (4th Edition), McGraw Hill, 2010

Chapter Overview

* Use Case Modelling

* Prototyping
* Advance Use Case

Use Cases

* Use Cases — descriptions of the functionality
of the system from the users’ perspective.

— Use Case diagrams
* show which users will communicate with the system
* define the scope of the system

— Use Case descriptions

* specify the interaction between the users (actors) and
the system for each use case as the users see it

* could be further elaborated by
communication/sequence diagrams.

What are the key activities that make this business work?

Use Case Relationships

Relationship Function Notation
association The communication path between an actor
and a use case that it participates in
extend The insertion of additional behavior into a
. «extend»
base use case that does not know about it R

use case generali-

zation

A relationship between a general use case
and a more specific use case that inherits
and adds features to it

—

include

The insertion of additional behavior into a
base use case that explicitly describes the

insertion

«include»
o e

Use Case Diagrams

(/' ‘ommunication ,Use case
,sassociation -~

¥ Change
a client contact

Staff Contact

~
~ S
~ ~
~

S detor System or subsystem boundary

Use Case Diagrams: Actor

* describe the role that people, other systems
or devices take when communicating with a
particular use case or use cases
— not the same as job title or specific person

* one job title may play the roles of several actors
* one actor may represent several job titles

— drawn as a stick figure with a name

Lecturer Dell Zhang Role: Admission Tutor

Professor Mark Levene Role: Research Tutor
Staff Contact

Use Case Diagrams: Use Case

* describe a sequence of actions that the
system performs to achieve an observable
result of value to an actor
— drawn as a bubble (ellipse) with a name in or

below

* the name is usually an active verb and a noun phrase

Change
a client contact

Use Case Diagrams: Communication Association

e describes the communication link between an
instance of the use case and an instance of the
actor

— drawn as a line between the actor and the use
case

Change

a client contact

Staff Contact

Use Case Diagrams: Extend and Include
relationships

* The extend and include relationships between Use
Cases are shown as stereotyped dependencies (text
strings in guillemets) :

— «include» <<include>>

— «extend» SIextenc’z

Use Case Diagrams: «include»

One use case always includes the functionality of
another use case

A use case may include more than one other

Can be used to separate out a sequence of behavior
that is used in many use cases

Should not be used to create a hierarchical functional
decomposition of the system

«include»
----- N Find campaign

Assign staff to
work on a
campaign

Campaign
Manager

Use Case Diagrams: «include»

* One use case provides additional functionality that may be required
in another use case

* There may be multiple ways of extending a use case, which
represent variations in the way that actors interact with the use
case

* The extension points show when the extension occurs

* A condition can be placed in a note joined to the dependency arrow
(Note that it is not put in square brackets, unlike conditions in other

diagrams.) o —
" Check campaign \
/[budget \
/\ ‘ extension points)
:'/7, \ Summary print /

/\ I cextend» Condition {print

/ \ [_____| option selected}

C/ampaigﬁ " extension point:

Manager Summary print

Print campaign
summary /

Use Case Diagrams: Generalization

* Between use cases: shows that one use case provides all the
functionality of the more specific use case and some
additional functionality

* Between actors: shows that one actor can participate in all
the associations with use cases that the more specific actor
can plus some additional use cases

Record completion
of an advert
Staff Contact
Change
a client contact

ASS|gn individual staff to

work on a campa|gn
Assign staff to Work
Assign team of staff to
Campalgn

Manager

Use Case Descriptions

Using a simple paragraph
— Assign staff to work on a campaign

The campaign manager wishes to record which staff are working on a
particular campaign. This information is used to validate timesheets
and to calculate staff year-end bonuses.

Using a step-by-step breakdown of interaction between actor

and system

Assign staff to work on a campaign

Actor Action

1. The actor enters the client name. 2. Lists all campaigns for that
client.
3. Selects the relevant campaign. 4. Displays a list of all staff

5. Highlights the staff members 6.Presents a message confirming
to be assigned to this campaign. that staff have been allocated.

Alternative Courses
Steps 1-3. The actor knows the campaign name and enters it directly.

System Response

members not already allocated
to this campaign.

Use Case Descriptions

Using a template

— name of use case

— pre-conditions

— post-conditions

— Purpose

— Description

— alternative courses (routes)
— errors

Use Case Description Example

Use case ID Uco1

Use case Name | Create Assignment

Actor/User Instructor

Description Create assignment and their questions for each subject in each semester.

Pre-condition

Post-condition

Assignment and question information are stored in the Assignment database.

Flow of events

1 User inputs assignment data: assignment number, assignment title, number
of questions, practice database name, assignment start date, and
assignment due date.

2 The assignment data are validated as follows:

» Length of assignment title must not exceed 80 characters
» Length of practice database name must not exceed 30 characters.
* Assignment number and number of questions must be positive integers.

3 User adds question data until all question data of the assignment are added
to the Assignment database as follows:

3.1 Question number is automatic generated by the system starting from 1.
3.2 User inputs other question data: question description, complication
level, SQL statement solution, and question score.
3.3 The question data are validated as follows:
» Length of question description must not exceed 256 characters.
* Question score must be positive integer.
3.4 Increasing question number by 1.

Alternate Flow

2.1 If there are any invalid data, the system displays error message and forces
user to re-enter assignment data.

3.3.1 If there are any invalid data, the system displays error message and
forces user to re-enter question data.

Prototyping

A prototype is a system or a partially complete
system that is built quickly to explore some aspects
of the system requirements and that is not intended
as the final working system.

Prototyping can be used to support use case
modelling

Help elicit functional requirements

Test out system architectures based on the use cases
in order to meet the non-functional requirements

Prototyping Example

* Assignment Number:
[

= Number of Questions:

B Assignment Title:
| [Basic 5aL.- Select statement
= Select Practice Database:

[10 | [companyEimasri |
Instructions:

Download CompanyElmasri.sql which is a database for practice

Write SQL statements to solve the problems stated in question number 1-10|
Polnts for each question is 2.

) Start Date - Due Date:
| 4/3r2018, 8:00 AM - 4/10/2018,11:59 PM |

= Generate Question
Question Number: 1

Question Description:

Complication: Basic

SGL Statement Solution

SELECT Fname, Minit, Lname FROM employee WHERE Salary > 30000;

Score:

Retrieve Frame, Minit, and Lname of emplloyes whose salary is greater than 30,000

3 Add Question

Prototyping

Initial Define
analysis P objectives

Specify

Evaluate Construct

Prototyping
completed

Advantages of prototyping

Early demonstrations of system functionality help
identify any misunderstandings between developer
and client

Client requirements that have been missed can be
identified

Difficulties in the interface can be identified

The feasibility and usefulness of the system can be
tested, even though, by its very nature, the
prototype is incomplete

Disadvantages of prototyping

The client may perceive the prototype as part
of the final system

The prototype may divert attention from
functional to solely interface issues

Prototyping requires significant user
involvement

Managing the prototyping life cycle requires
careful decision making

User Interface prototypes User Interface prototypes

* For user interface prototypes, storyboarding can be used with * User interface prototypes can be implemented using
languages other than the one that the system will be

developed in, for example, Visual Basic.

hand-drawn designs

1 1 T jﬁlﬁ
Cheak; [Holbou Mo ot »,u. el
:))e([fk f’r'ngl'é Client I
] iz]
'47&7”9&/%'
&A o]
Vl'algue it raliged User seleds Client: (nmfm{ys listed . Unerseleds Grrw'jn. Dialogue initialized. User selects Client. User selects Campaign.
Campaigns listed.
Advanced Use Case Modelling Actor generalization - example
= The Customer and
« Actor generalisation the Sales Agent
& o actors are very Sales system
* Use case generalisation similar Ea |
. . A —<_ ListProducts)
* «include» — between use cases = They both interact N —
with List products, Customer \\ ot
* «extend» — between use cases Order products,
Accept payment ~ /
= Additionally, the i é/
Sales Agent interacts
with Calculate salesAgent —
commission

= Our diagram is a
mess — can we
simplify it?

Actor generalization

= If two actors
communicate with the
same set of use cases in
the same way, then we
can express this as a
generalisation to another
(possibly abstract) actor

= The descendent actors
inherit the roles and
relationships to use cases
held by the ancestor
actor

= We can substitute a
descendent actor
anywhere the ancestor
actor is expected. This is
the substitutability
principle

abstract actor
[
/

/ Sales system

ancestor
—_— | .
or parert ListProducts
N Purchaser _ N N
generaiisation w/

N

-

VRN VZRN

AcceptPayment
—1CalculateCommission

Customer SalesAgent

descendents or children

the modei

m‘
|

rﬂ Use actor generalization when it simplifies
I
U

Use case generalisation

= The ancestor use case must be a more general case of one or
more descendant use cases

= Child use cases are more specific forms of their parent
= They can inherit, add and override features of their parent

Sales system

/N /N

Customer

FindBook FindCD

Example of Use Case Description

= Find Product
= Input searching criteria to be search
= Find products according to searching criteria
= Display products matching to search criteria
= Find Book

= Input one of followings: ISBN, author name,
book title, or publisher

= Find books according to searching criteria
specified in previous step

= Display books matching to search criteria
= Find CD
= Input one of followings: CD Id or CD title

= Find CDs according to searching criteria
specified in previous step

= Display CDs matching to search criteria

«include»

= The client use case
executes until the point of
inclusion:
include(SupplierUseCase)
= Control passes to the
supplier use case which
executes
= When the supplier is
finished, control passes
back to the client use
case which finishes
execution

= Note:

= Client use cases are not
complete without the
included supplier use
cases

= Supplier use cases may
be complete use cases, or
they may just specify a
fragment of behaviour for
inclusion elsewhere

/

Manager

«include» Example

Use case: ChangeEmployeeDetails

Use case: FindEmployeeDetails

\ 4

client Personnel System

ChangeEmployeeDetails ». /stereob/pe
SN

«include»

\

— «inéludes

DeleteEmployeeDetails "\ dependency

relationship

\ L
supplie

——(ViewEmployeeDetails «dnclude» _ FindEmployeeDetails,
N r—

ID: 1

ID: 4

Brief description:
The Manager changes the employee details.

Brief description:
The Manager finds the employee details.

Primary actors:

Primary actors:

Manager Manager
Seconday actors: Seconday actors:
None None
Preconditions: Preconditions:

1. The Manager is logged on to the system.

1. The Manager is logged on to the system.

9 When use cases share common
behaviour we can factor this out into a
separate supplier use case and
«include» it in the clients

2

Main flow:

1. include(FindEmployeeDetails).

2. The system displays the employee details.
3. The Manager changes the employee details.

<

Postconditions:
1. The employee details have been changed.

Alternative flows:
None.

Main flow:

1. The Manager enters the employee's ID.
2. The system finds the employee details.

—|_ Postconditions:

1. The system has found the employee details.

Alternative flows:
None.

= «extend» is a way of
adding new behaviour into
the base use case by
inserting behaviour from
one or more extension use
cases
= The base use case
specifies one or more
extension points in its
flow of events
= The extension use case
may contain several
insertion segments
= The «extend» relationship
may specify which of the
base use case extension
points it is extending

/

Librarian

«extend»

base use case Library system

Return book)

o

stereotype

«éxt?nd»

\ h

|
dependency .
relationship ~ extension

Find book Use case

)

The client use case inserts behaviour
into the base use case. The base use

case provides extension points, but does

BN NPT W 1) NP, INSGUN JREAN

| 10t Kiowv about the extensions.

)

base use case

extension paint: ove;dueBook(

—_
ReturnBook

extension points
overdueBook

Base

\

/ «ex.tend» extension
extension 1 point
point name H

H
IssueFine

-

extension use case

use case

Use case: ReturnBook

1D: 9

Brief description:
The Librarian returns a borrowed book.

Primary actors:
Librarian

Secondary actors:
None.

Preconditions:
1. The Librarian is logged on to the system.

Main flow:

1, The Librarian enters the borrower's ID number.

2. The system displays the borrower's details including the list of
borrowed books.

3. The Librarian finds the book to be returned in the list of books.

extension point: overdueBook

4_The librarian retiirns the hoak.

Postconditions:
1. The book has been returned.

Alternative flows:
None.

There is an extension point overdueBook just before step 4 of the flow of events
Extension points are not numbered, as they are not part of the flow

Extension use case

—

ReturnBook

extension points
overdueBook

extension paint: overdueBook —|‘ """"

«extand»

\
the single insertion segment H
in IssueFine is inserted at the
overdueBook insertion point in

]
I
i
i
the RelurnBouok use case H

Extension Use case: IssueFine

ID: 10

Brief description:
Segment 1: The Librarian records and prints out a fine.

Primary actors:
Librarian

Secondary actors:
None.

Segment 1 preconditions:
1. The returned book is overdue.

1. The Librarian enters details of Uie fine into the system.
2. The system prints out the fine.

Segment 1 postconditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

= Extension use cases have one or more /nsertion segments
which are behaviour fragments that will be inserted at the
specified extension points in the base use case

Multiple insertion points

| extension points: overdueBook, payFine|

the
inse

P
e

first segment in IssueFine is
rted at overdueBook and

..... A TS
SeCond SEgMEnt at payi in

extension points

ReturnBook

overdueBook

«extend»

& /"'\\

IssueFine

If more than one extension point
is specified in the «extend»
relationship then the extension
use case must have the same
number of insertion segments

Extension Use case: IssueFine

ID: 10

Brief description:
Segment 1: The Librarian records and prints out a fine.
Segment 2: The Librarian accepts payment for a fine.

Primary actors:
Librarian

Secondary actors:
None.

Segment 1 preconditions:
1. The returned book is overdue.

Segment 1 flow:
1. The Librarian enters details of the fine into the system.
2. I'he system prints out the fine.

Segment 1 postcanditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

Segment 2 preconditions:
1. Afine is due from the horrower.

Segment 2 flow:

1. The Librarian accepts payment for the fine from the borrower.
2. The Librarian enters the paid fine in the system.

3. The system prints out a receipt for the paid fine.

Segment 2 postconditions:
1. The fine is recorded as paid.
2. 1he system has printed a receipt for the fine.

Conditional extensions

ReturnBook
extension points
overdueBook o
payFine condition
« > <« >

condition: {first offence} AN <e>$tend> <extend> condition: {!first offence} AN
extension points: - y ! Nommoeo extension points:
overdueBook / \ overdueBook, payFine

vv

= We can specify conditions on «extend» relationships
= Conditions are Boolean expressions
= The insertion is made if and only if the condition evaluates to true

Development of the Use Case Model

Iteration 1
Obvious use cases.

Simple use case
descriptions.

Iteration 2 '
Additional use cases.

Simple use case descriptions. L
Prototypes.

Iteration 3 } J
Structured use cases.

Structured use case
descriptions.
Prototypes.

TR

o

34

Summary

= We have learned about techniques for:
= Use case Modelling
= Advanced use case modelling:

= Actor generalisation

= Use case generalisation

= «include»

= «extend»

= Use advanced features with discretion
only where they simplify the model!

