204362 — Object-Oriented Design

Object-Oriented Concept

Adapted for 204362
by Areerat Trongratsameethong

Bennett, McRobb and Farmer, Object Oriented Systems Analysis and

Design Using UML, (4th Edition), McGraw Hill, 2010. 1

Learning Objectives

* The fundamental concepts of object-
orientation, including:
— Objects and classes
— Generalization, specialization and inheritance
— Information hiding and message passing
— Polymorphism

« Why OOD?

© 2010 Bennett, McRobb and Farmer

Object-Oriented Concept

An object is:
“An abstraction of something in a problem domain,
reflecting the capabilities of the system to keep

information about it, interact with it, or both.”
Coad and Yourdon (1990)

azfiouislnavnainnsnvesssunlunisdnivdeyasnsaumeaasdng n1s
U duiugseninedng

Abstraction luiidmned Wlimumaazidaamnatie aulaenzasd
lalal]

Object A nwaanvasissniiddny viedsdiaula fieglurenanaes
oy (fievemnaneazidunvesdauian Lfaﬁmmwwzaﬁ@qslum@um
aastleyun)

© 2010 Bennett, McRobb and Farmer

Object-Oriented Concept [2]

Abstraction
=R ad v dl

— nsuansngasuiitTym nauansanizlusauannaula
] o Y] Y v Yo ‘ﬁy

— doaanpududeunazdoa1fidinlatlym lfeaw

— mauAtoym ludaAnssuaansieg arunmuauauAalunig
whtleywneimlaazunsu (Diagram) siney

— ANNANNUSYRIRIA AN laue TUgUULILIeY WULANA8IeY
Aan4 (Class Modeling) nnsdumananianiis (Inheritance)
AMNANNUSITUI19Aana (Association) uazdoulsenavuesAana
(Aggregation/Composition)

http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Object-Oriented Concept [3]

“Objects have state, behaviour and identity.”
Booch (1994)

e State: anuzues object w nalananils Tellnasa
NOANTINVRIBRLIAA

* Behavior: wyinssun object anunsainl anunan
AOLAUBIFDMANITIIFNG] HIBATNITONBLAUBIARAITININTEH 1
Identity: wsaz object fiananeal Vsaansuzianizsia

© 2010 Bennett, McRobb and Farmer 5

Examples of Objects

Object Identity | Behaviour | State
. s Studying, resting,
A person. ‘Hussain Pervez. Speak, walk, read. quali¥ie3. ¢
. My favourite button . I Pressed. dirt
A shirt. white denim shirt. Shrink, stain, rip. o , Ys
A sale. Sale no #0015, Earn loyalty points. Invoiced,
18/05/05. cancelled.
A bottle of This bottle of Spill in transit. Unsold, opened,
ketchup. ketchup. empty.
© 2010 Bennett, McRobb and Farmer 6

Class and Instance

* All objects are instances of some class

* A Class is a description of a set of objects
with similar:
— features (attributes, operations, links);
— semantics;

— constraints (e.g. when and whether an object
can be instantiated).

OMG (2009)

© 2010 Bennett, McRobb and Farmer

Class and Instance

* An object is an instance of some class

* So, instance = object

— but also carries connotations (a5ung, Anuvanauie) of
the class to which the object belongs (8auiiaiiluaas
Aana i)

* |nstances of a class are similar in their:

— Structure: what they know, what information they
hold, what links they have to other objects

— Behaviour: what they can do

© 2010 Bennett, McRobb and Farmer 8

Generalization and Specialization

* Classification is hierarchic in nature

* For example, a person may be an employee, a
customer, a supplier of a service

* An employee may be paid monthly, weekly or
hourly

* An hourly paid employee may be a driver, a
cleaner, a sales assistant

© 2010 Bennett, McRobb and Farmer

Specialization Hierarchy

Person More general

/I\ (superclasses)
A
Employee Customer Supplier
monthly weekly hourly
paid paid paid
v . .
Driver Cleaner Sales More specialized

assistant (subclasses)

© 2010 Bennett, McRobb and Farmer 10

Generalization and Specialization

* More general bits of description are
abstracted out from specialized classes:

SystemsAnalyst Driver
name name
employee-no employee-no
startDate startDate
monthlySalary standardHourlyRate
grade overtimeRate
licenceType

© 2010 Bennett, McRobb and Farmer

General (superclass)
Employee
name
employee-no
startDate

/\

SystemsAnalyst Driver

monthlySalary standardHourlyRate
grade overtimeRate
licenceType

Specialized (subclasses)

© 2010 Bennett, McRobb and Farmer 12

Inheritance

* The whole description of a superclass applies
to all its subclasses, including:
— Information structure (including associations)

Employee
name
employee-no
All characteristics |startDate

of the superclass
are inherited by its

— Behaviour subclasses
 (But actually inheritance is how an O-O | I
programming language implements SystemsAnalyst Driver
generalization / specialization) monthlySalary standardHourlyRate
grade overtimeRate
licenceType
© 2010 Bennett, McRobb and Farmer 13 © 2010 Bennett, McRobb and Farmer 14
Instances of each :SystemsAnalyst Inheritance [2]
subclass _inqlude the name Inheritance
characteristics of the emp|0yee-n0 — Another basic principle of OO. There are notions of subclass and
superclass (but not > startDate superclass. A subclass is derived from a superclass. (An Employee is a
us.ua"y S.hown like montthSaIary - :’E;S(s):t:'))class inherits the attributes and behavior of the superclass.
this on diagrams) — The subclass can override the behavior of the superclass.
| grade — Inheritance creates a generalization-specialization hierarchy (type
— hierarchy).
l M — Inheritance promotes re-use.
name name, employee-no, LLag — Generalization Rules

startDate ‘ﬁ'agﬂu Subclass b@3U

employee-no u .
NIRUNBANIIIN Superclass Ad

startDate .

mployee Class
standardHourIyRate welu Diagram laidasla name,
overtimeRate employee-no, a2 startDate 7
licenceType Subclass 1#&319 Diagram

Wil awli Slide 71 13

© 2010 Bennett, McRobb and Farmer 15

* The ISA Rule:
— If all members of class A are members of class B and

— class A inherits all the properties (attributes, relationships,
operations and constrains) of class B then

— class B is a superclass of class A and it is said that A ISA B
* The ROLE Rule:
— If class A and class B have different roles of the same class C and

— class A and class B have at least one different property from class
Cthen

— class A and class B are subclasses of class C

http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Message-passing

Encapsulation
— The grouping of related items into one unit.
— One of the basic concepts of OO.
— Attributes and behaviors are encapsulated to create objects.
— 00 modeling is close to how we perceive the world. (Lusuaiaas

Fedng usuudnaesiinisanaesludneusmieuiulanuienanuilues)

— Implementation details are hidden from the outside world. We
all know how to use a phone, few of us care how it works.

— The packaging of operations and attributes representing state
into an object type so that state is accessible or modifiable
only through the objects' interface (nauiinlivdiayanasdauiaanini

method())
— Encapsulation lets builders of objects reuse already-existing
objects, and if those objects have already been well-tested,

much larger and more complex systems can be created.

17
http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Message-passing [2]

 Several objects may collaborate (nnvusuri)
to fulfil each system action

e “Record CD sale” could involve:
— A CD stock item object

— A sales transaction object
— A sales assistant object

* These objects communicate by sending each
other messages

© 2010 Bennett, McRobb and Farmer 18

Message-passing [3]

Message Passing
* Objects communicate by sending messages.
* Messages convey (dsu1u) some form of information.
* An object requests another object to carry out an activity by
sending it a message.
* Most messages pass arguments back and forth.
* Meilir Page-Jones defines three types of messages:
— Informative - send information for the object to update itself.
— Interrogative - ask an object to reveal some information about itself.
— Imperative - take some action on itself, or another object
* Grady Booch defines four types of messages:
— Synchronous - receiving object starts only when it receives a message
from a sender, and it is ready.
— Balking - sending object gives up on the message if the receiving
object is not ready to accept it.
— Timeout - sending object waits only for a certain time period for the
receiving object to be ready to accept the message.
— Asynchronous - sender can send a message to a receiver regardless of
whether the receiver is ready to receive it.

19
http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Message-passing and Encapsulation

Message from another object

p . , requests a service.
Layers of an onion

model of an object:

peration signature is a
interface through which an
operation can be called.

An outer layer of
operation signatures..:

Operations are located
within an object.

@sed by an
—p\operation is located i

the object too

...gives access to middle
layer of operations...

...which access an
inner core of data

© 2010 Bennett, McRobb and Farmer 20

Information Hiding: a strong design
principle

Message from another object

‘ . s requests a service.
Layers of an onion

model of an object:

Operations can only be
called by message with
valid operation signature.

Only the outer layer is
visible to other objects...

nly object’s own operation
can access its data.

...and it is the only way to
access operations...

epresentation of da

...which are the Only is hidden inside obje

way to access the
hidden data

© 2010 Bennett, McRobb and Farmer 21

Polymorphism

* Polymorphism allows one message to be sent

to objects of different classes

* Sending object need not know what kind of

object will receive the message

* Each receiving object knows how to respond

appropriately

© 2010 Bennett, McRobb and Farmer 22

Example of Polymorphism
program Adhoc;
function Add(x, y : Integer) : Integer;
begin
Add := x + vy

end;

function Add(s, t : String) : String;

begin
Add := (s, t)
end;
begin
(Add(1, 2)); // Prints 3

(Add('Hello, ', 'World!'"')); // Prints "Hello, World!"
end.

© 2010 Bennett, McRobb and Farmer 23

Polymorphism [2]

Polymorphism

— Literally means "many forms".

— A method can have many different forms of behavior.

— Commonly used between a set of classes that have a
common superclass.

— The sender of a message does not have to know the
type/class of the receiver.

— Assingle operation or attribute may be defined upon more
than one class and may take on different implementations
in each of those classes.

— An attribute may point to different objects at different
times.

— Mechanism to allow dynamic substitution of objects within
hyrarchy.
— Mechanism to allow sharing services in inheritance

hierarchy.

24
http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Why OOD?
OOD/OOP is good for:

* Analyzing user requirements: {1asansiasziaausiansre L
— 131@ 113014 Use Case Diagram uaz User Interface Mockup (Ul Mockup)
fwiudeansuaziudunaudieanisres 1
* Designing software: nsaanuuumensuailaalinisaenuuu@eing alfuaans
7 Class Diagram w5anldd1wiunis@eullsunssndiadng (Object-Oriented
Programming)
* Constructing software:
— Reusability (reusable components): nstindaulsznauaastansiuag
nauNn 14
— Reliability: flannanindeie
— Robustness: faunumiu
— Extensibility: srasanisrasen
— Maintainability: wsianisiingsinm

25
http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Why 00D? [2]

OOD/OOP is good for:

* According to the Gartner Institute: an1iu nhiaues
FugnniiAseszsulaniliABnudnled nisiu LL@&%‘IW‘I i
na1a13n

— 74% anslsiinliitszananudnsa iesannaulszannny
Uana visalUsfaaialinsemuiaunisaiinanu

— 28% NANWAWINIFUL sz nunulany wasTisidaiada
T ATAINLELNI ALY

—Tunnetl azfllenlunfayar Wauiiuiitiudnusisaganiy 1l
UszaumNNg1i3a

26
http://www.pages.drexel.edu/~ap62/pages/ooconcepts_1.html

Advantages of O-O

* Can save effort
— Reuse of generalized components cuts work, cost
and time
e Can improve software quality
— Encapsulation increases modularity
— Sub-systems less coupled to each other

— Better translations between analysis and design
models and working code

© 2010 Bennett, McRobb and Farmer 27

Summary

In this lecture you have learned about:

* The fundamental concepts of O-O
— Object, class, instance
— Generalization and specialization
— Message-passing and polymorphism
* Some of the advantages and justifications of
0-0

© 2010 Bennett, McRobb and Farmer 28

