
วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Memory Management

7.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel 32 and 64-bit Architectures

 Example: ARMv8 Architecture

7.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 To provide a detailed description of various ways of
organizing memory hardware

 To discuss various memory-management techniques,
including paging and segmentation

 To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with
paging

7.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Main memory and registers are only storage CPU can access
directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

brought : ถูกนาํพา

7.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

+

420940

7.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages

 Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes

 Load time: Must generate relocatable code if memory
location is not known at compile time

 Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers)

Binding: การกาํหนดคา่

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 2

7.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multistep Processing of a User Program

7.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

 Logical address – generated by the CPU; also referred to
as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

7.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent to
memory

 The user program deals with logical addresses; it never sees the
real physical addresses

Logical Address

7.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic relocation using a relocation register

7.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle
infrequently occurring cases

 No special support from the operating system is required
implemented through program design

Routine: โปรแกรมยอ่ย

7.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate
memory-resident library routine

 Stub replaces itself with the address of the routine, and
executes the routine

 Operating system needed to check if routine is in processes’
memory address

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 3

7.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping
 A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images

 Roll out, roll in – swapping variant used for priority-based scheduling algorithms;
lower-priority process is swapped out so higher-priority process can be loaded
and executed

 Major part of swap time is transfer time; total transfer time is directly proportional
to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes which have memory
images on disk

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and
Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below threshold

7.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic View of Swapping

or Roll-out

or Roll-in

7.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with
interrupt vector (โปรแกรมของระบบปฏิบติัการเอง)

 User processes then held in high memory

 Relocation registers used to protect user processes from each
other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each
logical address must be less than the limit register

 MMU maps logical address dynamically

(การจดัสรรพืนททีตีิดกนั)

contiguous : ติดกนั

7.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Support for Relocation and Limit Registers

7.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Allocation (Cont)
 Multiple-partition allocation (การจดัสรรเนือทีแบบหลายส่วน)

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered
throughout memory

 When a process arrives, it is allocated memory from a hole large
enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

อาจใช้การจดั Schedule แบบ FCFS

7.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough (หาพืนทีทีใหญ่กวา่หรือเท่ากบั)

 Best-fit: Allocate the smallest hole that is big enough; must search entire
list, unless ordered by size (หาพืนทีทีใกลเ้คียงทีสุด)

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list (หาพืนทีทีใหญ่
ทีสุดกอ่น)

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 4

7.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fragmentation
 External Fragmentation – total memory space exists to satisfy a

request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in
one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

compaction: การบีบอดั

satisfy: ปฏิบตัิตาม

shuffle:สับเปลียน
7.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging

 Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

 Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 16 Mbytes)

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames
and load program

 Set up a page table to translate logical to physical addresses

 Still have Internal fragmentation

7.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

7.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Hardware

Page number Page Offset

base Address

7.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Model of Logical and Physical Memory
Index of page number

สังเกต ตวัเลขจะเริมทีคา่ 0 เสมอ

7.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Example

0

1

2

3

Frame number

0

1

2

3

4

5

6

7

Page number

• Logical address: n = 2 and m = 4. Using a page size of 4 bytes and a physical memory
of 32 bytes (8 pages)

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 5

7.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free Frames

Before allocation After allocation

4 Pages

เรียงตามลาํดบั

Free-frame
ทีว่าง

7.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Exercise: Free Frames

Before allocation After allocation

15
18
13
20

15
18
13
20
14

7.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory
accesses. One for the page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory or
translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB
entry – uniquely identifies each process to provide address-space
protection for that process

 TLBs typically small (64 to 1,024 entries)

7.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Associative Memory

 Associative memory – parallel search

Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #

7.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Hardware With TLB

hit : page number found in the TLB
miss : page number not in the TLB

7.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Effective Access Time

 Hit ratio – percentage of times that a page number is found in the
TLB

 An 80% hit ratio means that we find the desired page number in the
TLB 80% of the time.

 Suppose that 10 nanoseconds to access memory.

 If we find the desired page in TLB then a mapped-memory
access take 10 ns

 Otherwise we need two memory access so it is 20 ns

 Effective Access Time (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12 nanoseconds

implying 20% slowdown in access time

 Consider amore realistic hit ratio of 99%,

EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying only 1% slowdown in access time.

(เวลาแท้จริงทใีช้ในการเข้าถงึหน่วยความจําหลกั)

hit ratio: อตัราส่วนการพบ page number ตอ่จาํนวน page number ทีอา้งอิงทงัหมด

ratio : อตัราส่วน

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 6

7.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Protection

 Memory protection implemented by associating protection bit
with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel

7.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid (v) or Invalid (i) Bit In A Page Table

7.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical
address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

7.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages Example

0

0

0
shared

private

3

7.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

7.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 7

7.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-Level Page-Table Scheme

Outer page table : หนา้อืนๆ ทีอยูค่นละตาราง

7.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number

 a 12-bit page offset

 Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the displacement within
the page of the outer page table

page number page offset

p1 p2 d

10 10 12

22 bits

Outer page table : หนา้อืนๆ ทีอยูค่นละตาราง

7.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Address-Translation Scheme

7.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three-level Paging Scheme

7.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same
location

 Virtual page numbers are compared in this chain searching for a match

 If a match is found, the corresponding physical frame is extracted

7.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hashed Page Table

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 8

7.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Inverted Page Table

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

 Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

 Use hash table to limit the search to one — or at most a
few — page-table entries

7.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Inverted Page Table Architecture

คูข่อง <process id, page number>

pid : Process id (หมายเลข process)

7.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

(แบ่งเป็นตอน)

7.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User’s View of a Program

7.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

7.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses;
each table entry has:

 base – contains the starting physical address where the
segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment
table’s location in memory

 Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

อา้งอิงความเขา้ใจในเรือง paging

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 9

7.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0 illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing
occurs at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

7.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Segmentation Hardware

Segment number

7.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Segmentation

4700+1000

7.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: The Intel IA-32 Architecture

 Supports both segmentation and segmentation with paging

 Each segment can be 4 GB

 Up to 16 K segments per process

 Divided into two partitions

 First partition of up to 8 K segments are private to process
(kept in local descriptor table (LDT))

 Second partition of up to 8K segments shared among all
processes (kept in global descriptor table (GDT))

7.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: The Intel IA-32 Architecture (Cont.)

 CPU generates logical address

 Selector given to segmentation unit

Which produces linear addresses

 Linear address given to paging unit

Which generates physical address in main memory

 Paging units form equivalent of MMU

 Pages sizes can be 4 KB or 4 MB

7.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical to Physical Address Translation in IA-32

วชิา 204341 เทอม 1 ปีการศกึษา 2563

อ.ดร.วรวุฒ ิ ศรสีุขคํา ภาควชิาวทิยาการคอมพวิเตอร ์มช. 10

7.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel IA-32 Segmentation

7.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel IA-32 Paging Architecture

7.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel IA-32 Page Address Extensions

 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space

 Paging went to a 3-level scheme

 Top two bits refer to a page directory pointer table

 Page-directory and page-table entries moved to 64-bits in size

 Net effect is increasing address space to 36 bits – 64GB of physical
memory

7.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel x86-64

 Current generation Intel x86 architecture

 64 bits is ginormous (> 16 exabytes)

 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB

 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and physical
addresses are 52 bits

7.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: ARM Architecture

 Dominant mobile platform chip
(Apple iOS and Google Android
devices for example)

 Modern, energy efficient, 32-bit
CPU

 4 KB and 16 KB pages

 1 MB and 16 MB pages (termed
sections)

 One-level paging for sections, two-
level for smaller pages

 Two levels of TLBs

 Outer level has two micro
TLBs (one data, one
instruction)

 Inner is single main TLB

 First inner is checked, on
miss outers are checked,
and on miss page table
walk performed by CPU

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 7

